Shivagowri commited on
Commit
c053326
·
1 Parent(s): 674bbaa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - snacks
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-snacks
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: snacks
17
+ type: snacks
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.9392670157068063
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # vit-snacks
29
+
30
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the snacks dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.2782
33
+ - Accuracy: 0.9393
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0002
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 5
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
+ | 0.8724 | 0.33 | 100 | 0.9118 | 0.8670 |
65
+ | 0.5628 | 0.66 | 200 | 0.6873 | 0.8471 |
66
+ | 0.4421 | 0.99 | 300 | 0.4995 | 0.8691 |
67
+ | 0.2837 | 1.32 | 400 | 0.4008 | 0.9026 |
68
+ | 0.1645 | 1.65 | 500 | 0.3702 | 0.9058 |
69
+ | 0.1604 | 1.98 | 600 | 0.3981 | 0.8921 |
70
+ | 0.0498 | 2.31 | 700 | 0.3185 | 0.9204 |
71
+ | 0.0406 | 2.64 | 800 | 0.3427 | 0.9141 |
72
+ | 0.1049 | 2.97 | 900 | 0.3444 | 0.9173 |
73
+ | 0.0272 | 3.3 | 1000 | 0.3168 | 0.9246 |
74
+ | 0.0186 | 3.63 | 1100 | 0.3142 | 0.9288 |
75
+ | 0.0203 | 3.96 | 1200 | 0.2931 | 0.9298 |
76
+ | 0.007 | 4.29 | 1300 | 0.2754 | 0.9393 |
77
+ | 0.0072 | 4.62 | 1400 | 0.2778 | 0.9403 |
78
+ | 0.0073 | 4.95 | 1500 | 0.2782 | 0.9393 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.20.1
84
+ - Pytorch 1.11.0+cu113
85
+ - Datasets 2.3.2
86
+ - Tokenizers 0.12.1