Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,19 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
4 |
Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth.
|
5 |
|
6 |
EQ-Bench: 84.89
|
@@ -18,4 +31,135 @@ The user’s message goes here
|
|
18 |
<|im_end|>
|
19 |
<|im_start|>assistant <|im_end|>
|
20 |
|
21 |
-
Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
base_model: 152334H/miqu-1-70b-sf
|
6 |
+
model-index:
|
7 |
+
- name: qlora-out
|
8 |
+
results: []
|
9 |
+
license: cc0-1.0
|
10 |
+
datasets:
|
11 |
+
- Open-Orca/SlimOrca
|
12 |
---
|
13 |
+
|
14 |
+
# ShinojiResearch/Senku-70B-Full
|
15 |
+
|
16 |
+
## Model Details
|
17 |
Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth.
|
18 |
|
19 |
EQ-Bench: 84.89
|
|
|
31 |
<|im_end|>
|
32 |
<|im_start|>assistant <|im_end|>
|
33 |
|
34 |
+
Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench,
|
35 |
+
|
36 |
+
## Base Model Details
|
37 |
+
|
38 |
+
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the Slimorca dataset.
|
39 |
+
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 0.3110
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
45 |
+
<details><summary>See axolotl config</summary>
|
46 |
+
|
47 |
+
axolotl version: `0.4.0`
|
48 |
+
```yaml
|
49 |
+
base_model: 152334H/miqu-1-70b-sf
|
50 |
+
model_type: MistralForCausalLM
|
51 |
+
tokenizer_type: LlamaTokenizer
|
52 |
+
is_mistral_derived_model: true
|
53 |
+
|
54 |
+
load_in_8bit: false
|
55 |
+
load_in_4bit: true
|
56 |
+
strict: false
|
57 |
+
|
58 |
+
datasets:
|
59 |
+
- path: Open-Orca/SlimOrca
|
60 |
+
type: sharegpt
|
61 |
+
conversation: chatml
|
62 |
+
dataset_prepared_path: last_run_prepared
|
63 |
+
val_set_size: 0.1
|
64 |
+
output_dir: ./qlora-out
|
65 |
+
|
66 |
+
adapter: qlora
|
67 |
+
lora_model_dir:
|
68 |
+
|
69 |
+
sequence_len: 8192
|
70 |
+
sample_packing: true
|
71 |
+
pad_to_sequence_len: true
|
72 |
+
|
73 |
+
lora_r: 32
|
74 |
+
lora_alpha: 16
|
75 |
+
lora_dropout: 0.05
|
76 |
+
lora_target_linear: true
|
77 |
+
lora_fan_in_fan_out:
|
78 |
+
lora_target_modules:
|
79 |
+
- gate_proj
|
80 |
+
- down_proj
|
81 |
+
- up_proj
|
82 |
+
- q_proj
|
83 |
+
- v_proj
|
84 |
+
- k_proj
|
85 |
+
- o_proj
|
86 |
+
|
87 |
+
wandb_project:
|
88 |
+
wandb_entity:
|
89 |
+
wandb_watch:
|
90 |
+
wandb_name:
|
91 |
+
wandb_log_model:
|
92 |
+
|
93 |
+
gradient_accumulation_steps: 4
|
94 |
+
micro_batch_size: 2
|
95 |
+
num_epochs: 1
|
96 |
+
optimizer: adamw_bnb_8bit
|
97 |
+
lr_scheduler: cosine
|
98 |
+
learning_rate: 0.0002
|
99 |
+
|
100 |
+
train_on_inputs: false
|
101 |
+
group_by_length: false
|
102 |
+
bf16: auto
|
103 |
+
fp16:
|
104 |
+
tf32: false
|
105 |
+
|
106 |
+
gradient_checkpointing: true
|
107 |
+
early_stopping_patience:
|
108 |
+
resume_from_checkpoint:
|
109 |
+
local_rank:
|
110 |
+
logging_steps: 1
|
111 |
+
xformers_attention:
|
112 |
+
flash_attention: true
|
113 |
+
|
114 |
+
loss_watchdog_threshold: 5.0
|
115 |
+
loss_watchdog_patience: 3
|
116 |
+
|
117 |
+
warmup_steps: 10
|
118 |
+
evals_per_epoch: 4
|
119 |
+
eval_table_size:
|
120 |
+
eval_table_max_new_tokens: 128
|
121 |
+
saves_per_epoch: 1
|
122 |
+
debug:
|
123 |
+
deepspeed:
|
124 |
+
weight_decay: 0.0
|
125 |
+
fsdp:
|
126 |
+
fsdp_config:
|
127 |
+
special_tokens:
|
128 |
+
bos_token: "<s>"
|
129 |
+
eos_token: "</s>"
|
130 |
+
unk_token: "<unk>"
|
131 |
+
```
|
132 |
+
|
133 |
+
</details><br>
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- learning_rate: 0.0002
|
139 |
+
- train_batch_size: 2
|
140 |
+
- eval_batch_size: 2
|
141 |
+
- seed: 42
|
142 |
+
- gradient_accumulation_steps: 4
|
143 |
+
- total_train_batch_size: 8
|
144 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
145 |
+
- lr_scheduler_type: cosine
|
146 |
+
- lr_scheduler_warmup_steps: 10
|
147 |
+
- num_epochs: 1
|
148 |
+
|
149 |
+
### Training results
|
150 |
+
|
151 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
152 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
153 |
+
| 0.9043 | 0.0 | 1 | 0.6387 |
|
154 |
+
| 0.5612 | 0.25 | 881 | 0.3279 |
|
155 |
+
| 0.6044 | 0.5 | 1762 | 0.3177 |
|
156 |
+
| 0.6592 | 0.75 | 2643 | 0.3110 |
|
157 |
+
|
158 |
+
|
159 |
+
### Framework versions
|
160 |
+
|
161 |
+
- PEFT 0.8.2
|
162 |
+
- Transformers 4.38.0.dev0
|
163 |
+
- Pytorch 2.1.2+cu118
|
164 |
+
- Datasets 2.16.1
|
165 |
+
- Tokenizers 0.15.0
|