Sim
commited on
Commit
·
a292260
1
Parent(s):
8b662f6
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: NLLB-600m-vie_Latn-to-eng_Latn
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# NLLB-600m-vie_Latn-to-eng_Latn
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1189
|
20 |
+
- Bleu: 36.6767
|
21 |
+
- Gen Len: 47.504
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 3
|
42 |
+
- eval_batch_size: 3
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 24
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- training_steps: 10000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
55 |
+
| 1.9294 | 2.24 | 1000 | 1.5970 | 23.6201 | 48.1 |
|
56 |
+
| 1.4 | 4.47 | 2000 | 1.3216 | 28.9526 | 45.156 |
|
57 |
+
| 1.2071 | 6.71 | 3000 | 1.2245 | 32.5538 | 46.576 |
|
58 |
+
| 1.0893 | 8.95 | 4000 | 1.1720 | 34.265 | 46.052 |
|
59 |
+
| 1.0064 | 11.19 | 5000 | 1.1497 | 34.9249 | 46.508 |
|
60 |
+
| 0.9562 | 13.42 | 6000 | 1.1331 | 36.4619 | 47.244 |
|
61 |
+
| 0.9183 | 15.66 | 7000 | 1.1247 | 36.4723 | 47.26 |
|
62 |
+
| 0.8858 | 17.9 | 8000 | 1.1198 | 36.7058 | 47.376 |
|
63 |
+
| 0.8651 | 20.13 | 9000 | 1.1201 | 36.7897 | 47.496 |
|
64 |
+
| 0.8546 | 22.37 | 10000 | 1.1189 | 36.6767 | 47.504 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.22.1
|
70 |
+
- Pytorch 1.12.1+cu113
|
71 |
+
- Datasets 2.4.0
|
72 |
+
- Tokenizers 0.12.1
|