Sim commited on
Commit
a292260
·
1 Parent(s): 8b662f6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - bleu
7
+ model-index:
8
+ - name: NLLB-600m-vie_Latn-to-eng_Latn
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # NLLB-600m-vie_Latn-to-eng_Latn
16
+
17
+ This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.1189
20
+ - Bleu: 36.6767
21
+ - Gen Len: 47.504
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 3
42
+ - eval_batch_size: 3
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 24
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - training_steps: 10000
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
55
+ | 1.9294 | 2.24 | 1000 | 1.5970 | 23.6201 | 48.1 |
56
+ | 1.4 | 4.47 | 2000 | 1.3216 | 28.9526 | 45.156 |
57
+ | 1.2071 | 6.71 | 3000 | 1.2245 | 32.5538 | 46.576 |
58
+ | 1.0893 | 8.95 | 4000 | 1.1720 | 34.265 | 46.052 |
59
+ | 1.0064 | 11.19 | 5000 | 1.1497 | 34.9249 | 46.508 |
60
+ | 0.9562 | 13.42 | 6000 | 1.1331 | 36.4619 | 47.244 |
61
+ | 0.9183 | 15.66 | 7000 | 1.1247 | 36.4723 | 47.26 |
62
+ | 0.8858 | 17.9 | 8000 | 1.1198 | 36.7058 | 47.376 |
63
+ | 0.8651 | 20.13 | 9000 | 1.1201 | 36.7897 | 47.496 |
64
+ | 0.8546 | 22.37 | 10000 | 1.1189 | 36.6767 | 47.504 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.22.1
70
+ - Pytorch 1.12.1+cu113
71
+ - Datasets 2.4.0
72
+ - Tokenizers 0.12.1