nekoboost commited on
Commit
280c009
·
1 Parent(s): bdff90b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -3,3 +3,35 @@ license: cc-by-4.0
3
  language:
4
  - cs
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  language:
4
  - cs
5
  ---
6
+
7
+ ## RetroMAE
8
+
9
+ RetroMAE-Small is a BERT-small model pre-trained with the [RetroMAE](https://arxiv.org/abs/2205.12035) objective on a Czech web corpus.
10
+
11
+ This model was created at Seznam.cz as part of a project to create high-quality small Czech semantic embedding models. These models perform well across various natural language processing tasks, including similarity search, retrieval, clustering, and classification. For further details or evaluation results, please visit the associated [paper]() or [GitHub repository]((https://github.com/seznam/czech-semantic-embedding-models)).
12
+
13
+ ## How to Use
14
+
15
+ You can load and use the model like this:
16
+
17
+ ```python
18
+ import torch
19
+ from transformers import AutoModel, AutoTokenizer
20
+
21
+ model_name = "Seznam/retromae-small-cs" # Hugging Face link
22
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
23
+ model = AutoModel.from_pretrained(model_name)
24
+
25
+ input_texts = [
26
+ "Dnes je výborné počasí na procházku po parku.",
27
+ "Večer si oblíbím dobrý film a uvařím si čaj."
28
+ ]
29
+
30
+ # Tokenize the input texts
31
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
32
+
33
+ outputs = model(**batch_dict)
34
+ embeddings = outputs.last_hidden_state[:, 0] # Extract CLS token embeddings
35
+
36
+ similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0)
37
+ ```