SergejSchweizer commited on
Commit
afa5a4e
·
1 Parent(s): b31c44c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 992.55 +/- 157.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5178a2293e76fdb79929348f1f9515a049d9012bf947bf70027f01dc82e53ee3
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75ebd5d1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75ebd5d280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75ebd5d310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75ebd5d3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f75ebd5d430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f75ebd5d4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75ebd5d550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75ebd5d5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f75ebd5d670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75ebd5d700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75ebd5d790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75ebd5d820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f75ebd558d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674038359823143005,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADpSdL8DaAnAsnofv4psFT9ldLm+/M9aPUXgGT7i+9G+LlUQP3M/xb/tZa6+ilNRvDsSeL+rQmg+81shPx0V8z52br4+SEAIPhVhQj/zOre+reEhv5dYF78wMqa+afhHPjYpsL96Avo+7y/qPumTJj+EGwS/0HEUwObVg7/3vQO/P3WuvaCZmD4Cime9ggXovgdcwj5AMKo+PJiWvgTTVj9uyn6/nbhgPVcFIT/3Kzy+xa03P5/ryLwO8q4+ysqUvhTHU78t2T8+MHJUPbWbm702KbC/egL6Pu8v6j7pkyY/maFfuP24AcBrf9G+qsD/PsiVrb8uF6o/mu2TPQwco7/8z7E+9Ttkvz+oRT+/rFQ8qd5Zv9eJWcCQKiQ/xkhYPIJyMz62IfG/PXBKP2qvA7uK6cY/9NwYP9MjOr++4IG8/AI6P3oC+j7vL+o+gbbEvz0zS7/CIiHAqaEWwEPTpD3gitu+0Bc1vye66bv0AEQ9wL3ePkPbb7/Ke4q+ToEYP1wd+75Nq6O/FzokP62ehzwFUpy+1f1Yv3NXoz4eqA8/3j5Hv5s/FL/0k6S+bOPXv/wCOj96Avo+FuwLwOmTJj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQeo4zAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoTz+PAAAAAD96eO/AAAAALY2Ar4AAAAAXjbmPwAAAAD9N/c9AAAAADYo+T8AAAAAdiMkvQAAAAACv/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0WGEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsA/LwAAAAAtz7dvwAAAAClppu9AAAAAKnL2z8AAAAAFjtdPAAAAACVUwBAAAAAAIuxCD4AAAAAb3XZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3azLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDi3IO9AAAAAK7f9b8AAAAAgsqsvQAAAABqx+s/AAAAAM6dbT0AAAAAMor8PwAAAABBBtE9AAAAAHGS678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3/8U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQ4TyvQAAAACwBf2/AAAAAMcwdDwAAAAAtu7xPwAAAABctwK+AAAAAGbl4T8AAAAAY+ZzvQAAAADTgfa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHSycfaHsTqMAWyUTegDjAF0lEdAqAHU5p8F6nV9lChoBkdAijdTgdfb9WgHTegDaAhHQKgDCIF/x2B1fZQoaAZHQHjUZW/8EV5oB03oA2gIR0CoBtWhIvrXdX2UKGgGR0B/qgt8NQTFaAdN6ANoCEdAqA1THyVfNXV9lChoBkdAgoEjzyz5XWgHTegDaAhHQKgOT8fms/91fZQoaAZHQHoC2aH9FWpoB03oA2gIR0CoD3ujqOcUdX2UKGgGR0CIcO8vEjxDaAdN6ANoCEdAqBNGz4UN8XV9lChoBkdAg4s0AtFrmGgHTegDaAhHQKgZlMINVip1fZQoaAZHQIAgfEhq0t1oB03oA2gIR0CoGpQoCuEFdX2UKGgGR0B7+0O/cnE3aAdN6ANoCEdAqBu6ebutwXV9lChoBkdAgr4fPPcBVGgHTegDaAhHQKgfh2LYPG11fZQoaAZHQH43nAymALBoB03oA2gIR0CoJcwgLZzxdX2UKGgGR0CFBHrjYI0JaAdN6ANoCEdAqCbPPzFuN3V9lChoBkdAezOih37k4mgHTegDaAhHQKgn/bnHNot1fZQoaAZHQHXMqEWZZ0VoB03oA2gIR0CoK8px//eddX2UKGgGR0B2nbovBacJaAdN6ANoCEdAqDIvpjc2znV9lChoBkdAgJOPYFqzq2gHTegDaAhHQKgzKGpuMuR1fZQoaAZHQHsKZmRNh3JoB03oA2gIR0CoNFh5X2dvdX2UKGgGR0CHUGQ7tAs1aAdN6ANoCEdAqDgixX4j8nV9lChoBkdAfqWM4LkS3GgHTegDaAhHQKg+hS4vvjR1fZQoaAZHQHeBBs/IKdBoB03oA2gIR0CoP4DM/yG0dX2UKGgGR8BBOuRcNYr8aAdLYGgIR0CoP7A/C66KdX2UKGgGR0B81oJgLJCCaAdN6ANoCEdAqECn+dbxE3V9lChoBkdAes+QpnYg72gHTegDaAhHQKhEaBxPwd91fZQoaAZHQICsa88La25oB03oA2gIR0CoS9lXiiqRdX2UKGgGR0B2y6ePJaJRaAdN6ANoCEdAqEwJhUipvXV9lChoBkdAgmtyeqaPS2gHTegDaAhHQKhM/YwqRU51fZQoaAZHQI/kb238XN1oB03oA2gIR0CoUKcvM8oydX2UKGgGR0B++MTK1XvIaAdN6ANoCEdAqFfBIatLc3V9lChoBkdAkUzJqASWaGgHTegDaAhHQKhX9Gp++dt1fZQoaAZHQJAoT0th/iJoB03oA2gIR0CoWOkJ0GNadX2UKGgGR0CAXLsPatcOaAdN6ANoCEdAqFythgE2YXV9lChoBkdAh1AkPlMh5mgHTegDaAhHQKhj29cKPXF1fZQoaAZHQIz1hshxHXpoB03oA2gIR0CoZAmf5DZ2dX2UKGgGR0CMSKeg+QlsaAdN6ANoCEdAqGUMPczqKXV9lChoBkdAe6lmr8zhxmgHTegDaAhHQKho6liSaE11fZQoaAZHQH9aA8OkLx9oB03oA2gIR0CocCkM9bHIdX2UKGgGR0CFxFSAH3UQaAdN6ANoCEdAqHBV3dKujnV9lChoBkdAj8QcDjin52gHTegDaAhHQKhxUdjoZAJ1fZQoaAZHQIWzfkkrwvxoB03oA2gIR0CodQ5ULlV+dX2UKGgGR0B8YGQIUrTZaAdN6ANoCEdAqHxMyad+X3V9lChoBkdAjz7+fRNRFmgHTegDaAhHQKh8fY3eenR1fZQoaAZHQIX7WjoIOYpoB03oA2gIR0CofW+zt1IRdX2UKGgGR0CQoUv99+gEaAdN6ANoCEdAqIEePDHfdnV9lChoBkdAj+6BBqsU7GgHTegDaAhHQKiIT9jPOY91fZQoaAZHQJBa9iSaEzxoB03oA2gIR0CoiHza0x/NdX2UKGgGR0CAvK7jkuHvaAdN6ANoCEdAqIlxlJ6IFnV9lChoBkdAj+ZPFFUhm2gHTegDaAhHQKiNKHMUypJ1fZQoaAZHQI+RbJ4jbBZoB03oA2gIR0ColFX6Q/5ddX2UKGgGR0CQPFTHsC1aaAdN6ANoCEdAqJSDvsqrinV9lChoBkdAkKFbBO58SmgHTegDaAhHQKiVgQPI4l11fZQoaAZHQJCDDra/RE5oB03oA2gIR0ComTXcgyM2dX2UKGgGR0CIzILtu1neaAdN6ANoCEdAqKBVKAavR3V9lChoBkdAipCMANoak2gHTegDaAhHQKiggX+ERJ51fZQoaAZHQIsgVOZb6gxoB03oA2gIR0CooXUNz8xcdX2UKGgGR0CGGEYvWYnfaAdN6ANoCEdAqKUok7fYSXV9lChoBkdAgLY35N47imgHTegDaAhHQKisYBreqJd1fZQoaAZHQJCOiMPz4DdoB03oA2gIR0CorIywW3z+dX2UKGgGR0CR1iH6dlNDaAdN6ANoCEdAqK17sjVx0nV9lChoBkdAkf/aV+qioWgHTegDaAhHQKixOCFsYVJ1fZQoaAZHQJH+kq0+kgxoB03oA2gIR0CouF5YxL00dX2UKGgGR0CRplMnJDE4aAdN6ANoCEdAqLiMsUZeiXV9lChoBkdAgnhFtTDO1WgHTegDaAhHQKi5fCIDYAd1fZQoaAZHQJFJUd6sySFoB03oA2gIR0CovTNqgyuZdX2UKGgGR0CMvfScbzbwaAdN6ANoCEdAqMRnnMdLhHV9lChoBkdAkwVM8gZCOWgHTegDaAhHQKjElHoX9BN1fZQoaAZHQJDm7Td+G49oB03oA2gIR0CoxZN9H+ZPdX2UKGgGR0CRKjXZXdTHaAdN6ANoCEdAqMk7W7OE/XV9lChoBkdAkiIOBtk4FWgHTegDaAhHQKjQhU1AJLN1fZQoaAZHQInxxB1LamJoB03oA2gIR0Co0LVM23rldX2UKGgGR0COOWbDuSfUaAdN6ANoCEdAqNGjuBtk4HV9lChoBkdAkLI8Iu5BkmgHTegDaAhHQKjVZul41P51fZQoaAZHQJP1S6ErXlNoB03oA2gIR0Co3LoegctHdX2UKGgGR0CU6gEd/8VIaAdN6ANoCEdAqNztzfaYeHV9lChoBkdAgcyuoHcDbWgHTegDaAhHQKjd5Ud7v5R1fZQoaAZHQISodZLZi/hoB03oA2gIR0Co4bo8ZDRddX2UKGgGR0CT2GTQVsUJaAdN6ANoCEdAqOjam0mdAnV9lChoBkdAkz5DFId2gWgHTegDaAhHQKjpDS619fF1fZQoaAZHQJUR0Lc9GI9oB03oA2gIR0Co6fzPa+N+dX2UKGgGR0CT95uQZGayaAdN6ANoCEdAqO2wwVTJhnV9lChoBkdAkdL4LkS26WgHTegDaAhHQKj07kWAPNF1fZQoaAZHQIt9ePcSGrVoB03oA2gIR0Co9R/IsAeadX2UKGgGR0CBRGFkhA4XaAdN6ANoCEdAqPYVlTWGy3V9lChoBkdAih22eYlY2mgHTegDaAhHQKj56XzDn/11fZQoaAZHQIQPwWBSUC9oB03oA2gIR0CpAWYYrJ8wdX2UKGgGR0COoxA0sOG1aAdN6ANoCEdAqQGUX1rZanV9lChoBkdAjZ+wp4KQaWgHTegDaAhHQKkCiCvovBd1fZQoaAZHQHzev4REnb9oB03oA2gIR0CpBjz544ZNdX2UKGgGR0COQTK4hEBsaAdN6ANoCEdAqQ1oxzq8lHV9lChoBkdAjJdkRSP2f2gHTegDaAhHQKkNl7O3UhF1fZQoaAZHQIXuF5dGAkNoB03oA2gIR0CpDpNelbeNdX2UKGgGR0CTeXho/RmcaAdN6ANoCEdAqRJD8DSw4nV9lChoBkdAkLGVlPJq7GgHTegDaAhHQKkZZpyp71J1fZQoaAZHQJAvoSUTtb9oB03oA2gIR0CpGZjvmYBvdX2UKGgGR0CQbOxbSqlxaAdN6ANoCEdAqRqXI2fkFXV9lChoBkdAiZ5L9VFQVWgHTegDaAhHQKkeTvcafjF1fZQoaAZHQJA9LcvduYRoB03oA2gIR0CpJX4MOPNndX2UKGgGR0CRDo6KtPpIaAdN6ANoCEdAqSWrBwdbPnV9lChoBkdAkLYw2Q4jr2gHTegDaAhHQKkmstbLU1B1fZQoaAZHQJIKRH7P6bhoB03oA2gIR0CpKlSOJcgRdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2df769e8b19829ebc55101fc64b8250323a9aac181c042e51fd26277db3efe5f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69704b216d0d323fed286f9f04a93680bf2e3ce8a2d8ef27c928bed6b4fa0ea1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75ebd5d1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75ebd5d280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75ebd5d310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75ebd5d3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f75ebd5d430>", "forward": "<function ActorCriticPolicy.forward at 0x7f75ebd5d4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75ebd5d550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75ebd5d5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75ebd5d670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75ebd5d700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75ebd5d790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75ebd5d820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75ebd558d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674038359823143005, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADpSdL8DaAnAsnofv4psFT9ldLm+/M9aPUXgGT7i+9G+LlUQP3M/xb/tZa6+ilNRvDsSeL+rQmg+81shPx0V8z52br4+SEAIPhVhQj/zOre+reEhv5dYF78wMqa+afhHPjYpsL96Avo+7y/qPumTJj+EGwS/0HEUwObVg7/3vQO/P3WuvaCZmD4Cime9ggXovgdcwj5AMKo+PJiWvgTTVj9uyn6/nbhgPVcFIT/3Kzy+xa03P5/ryLwO8q4+ysqUvhTHU78t2T8+MHJUPbWbm702KbC/egL6Pu8v6j7pkyY/maFfuP24AcBrf9G+qsD/PsiVrb8uF6o/mu2TPQwco7/8z7E+9Ttkvz+oRT+/rFQ8qd5Zv9eJWcCQKiQ/xkhYPIJyMz62IfG/PXBKP2qvA7uK6cY/9NwYP9MjOr++4IG8/AI6P3oC+j7vL+o+gbbEvz0zS7/CIiHAqaEWwEPTpD3gitu+0Bc1vye66bv0AEQ9wL3ePkPbb7/Ke4q+ToEYP1wd+75Nq6O/FzokP62ehzwFUpy+1f1Yv3NXoz4eqA8/3j5Hv5s/FL/0k6S+bOPXv/wCOj96Avo+FuwLwOmTJj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQeo4zAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoTz+PAAAAAD96eO/AAAAALY2Ar4AAAAAXjbmPwAAAAD9N/c9AAAAADYo+T8AAAAAdiMkvQAAAAACv/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0WGEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsA/LwAAAAAtz7dvwAAAAClppu9AAAAAKnL2z8AAAAAFjtdPAAAAACVUwBAAAAAAIuxCD4AAAAAb3XZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3azLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDi3IO9AAAAAK7f9b8AAAAAgsqsvQAAAABqx+s/AAAAAM6dbT0AAAAAMor8PwAAAABBBtE9AAAAAHGS678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3/8U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQ4TyvQAAAACwBf2/AAAAAMcwdDwAAAAAtu7xPwAAAABctwK+AAAAAGbl4T8AAAAAY+ZzvQAAAADTgfa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHSycfaHsTqMAWyUTegDjAF0lEdAqAHU5p8F6nV9lChoBkdAijdTgdfb9WgHTegDaAhHQKgDCIF/x2B1fZQoaAZHQHjUZW/8EV5oB03oA2gIR0CoBtWhIvrXdX2UKGgGR0B/qgt8NQTFaAdN6ANoCEdAqA1THyVfNXV9lChoBkdAgoEjzyz5XWgHTegDaAhHQKgOT8fms/91fZQoaAZHQHoC2aH9FWpoB03oA2gIR0CoD3ujqOcUdX2UKGgGR0CIcO8vEjxDaAdN6ANoCEdAqBNGz4UN8XV9lChoBkdAg4s0AtFrmGgHTegDaAhHQKgZlMINVip1fZQoaAZHQIAgfEhq0t1oB03oA2gIR0CoGpQoCuEFdX2UKGgGR0B7+0O/cnE3aAdN6ANoCEdAqBu6ebutwXV9lChoBkdAgr4fPPcBVGgHTegDaAhHQKgfh2LYPG11fZQoaAZHQH43nAymALBoB03oA2gIR0CoJcwgLZzxdX2UKGgGR0CFBHrjYI0JaAdN6ANoCEdAqCbPPzFuN3V9lChoBkdAezOih37k4mgHTegDaAhHQKgn/bnHNot1fZQoaAZHQHXMqEWZZ0VoB03oA2gIR0CoK8px//eddX2UKGgGR0B2nbovBacJaAdN6ANoCEdAqDIvpjc2znV9lChoBkdAgJOPYFqzq2gHTegDaAhHQKgzKGpuMuR1fZQoaAZHQHsKZmRNh3JoB03oA2gIR0CoNFh5X2dvdX2UKGgGR0CHUGQ7tAs1aAdN6ANoCEdAqDgixX4j8nV9lChoBkdAfqWM4LkS3GgHTegDaAhHQKg+hS4vvjR1fZQoaAZHQHeBBs/IKdBoB03oA2gIR0CoP4DM/yG0dX2UKGgGR8BBOuRcNYr8aAdLYGgIR0CoP7A/C66KdX2UKGgGR0B81oJgLJCCaAdN6ANoCEdAqECn+dbxE3V9lChoBkdAes+QpnYg72gHTegDaAhHQKhEaBxPwd91fZQoaAZHQICsa88La25oB03oA2gIR0CoS9lXiiqRdX2UKGgGR0B2y6ePJaJRaAdN6ANoCEdAqEwJhUipvXV9lChoBkdAgmtyeqaPS2gHTegDaAhHQKhM/YwqRU51fZQoaAZHQI/kb238XN1oB03oA2gIR0CoUKcvM8oydX2UKGgGR0B++MTK1XvIaAdN6ANoCEdAqFfBIatLc3V9lChoBkdAkUzJqASWaGgHTegDaAhHQKhX9Gp++dt1fZQoaAZHQJAoT0th/iJoB03oA2gIR0CoWOkJ0GNadX2UKGgGR0CAXLsPatcOaAdN6ANoCEdAqFythgE2YXV9lChoBkdAh1AkPlMh5mgHTegDaAhHQKhj29cKPXF1fZQoaAZHQIz1hshxHXpoB03oA2gIR0CoZAmf5DZ2dX2UKGgGR0CMSKeg+QlsaAdN6ANoCEdAqGUMPczqKXV9lChoBkdAe6lmr8zhxmgHTegDaAhHQKho6liSaE11fZQoaAZHQH9aA8OkLx9oB03oA2gIR0CocCkM9bHIdX2UKGgGR0CFxFSAH3UQaAdN6ANoCEdAqHBV3dKujnV9lChoBkdAj8QcDjin52gHTegDaAhHQKhxUdjoZAJ1fZQoaAZHQIWzfkkrwvxoB03oA2gIR0CodQ5ULlV+dX2UKGgGR0B8YGQIUrTZaAdN6ANoCEdAqHxMyad+X3V9lChoBkdAjz7+fRNRFmgHTegDaAhHQKh8fY3eenR1fZQoaAZHQIX7WjoIOYpoB03oA2gIR0CofW+zt1IRdX2UKGgGR0CQoUv99+gEaAdN6ANoCEdAqIEePDHfdnV9lChoBkdAj+6BBqsU7GgHTegDaAhHQKiIT9jPOY91fZQoaAZHQJBa9iSaEzxoB03oA2gIR0CoiHza0x/NdX2UKGgGR0CAvK7jkuHvaAdN6ANoCEdAqIlxlJ6IFnV9lChoBkdAj+ZPFFUhm2gHTegDaAhHQKiNKHMUypJ1fZQoaAZHQI+RbJ4jbBZoB03oA2gIR0ColFX6Q/5ddX2UKGgGR0CQPFTHsC1aaAdN6ANoCEdAqJSDvsqrinV9lChoBkdAkKFbBO58SmgHTegDaAhHQKiVgQPI4l11fZQoaAZHQJCDDra/RE5oB03oA2gIR0ComTXcgyM2dX2UKGgGR0CIzILtu1neaAdN6ANoCEdAqKBVKAavR3V9lChoBkdAipCMANoak2gHTegDaAhHQKiggX+ERJ51fZQoaAZHQIsgVOZb6gxoB03oA2gIR0CooXUNz8xcdX2UKGgGR0CGGEYvWYnfaAdN6ANoCEdAqKUok7fYSXV9lChoBkdAgLY35N47imgHTegDaAhHQKisYBreqJd1fZQoaAZHQJCOiMPz4DdoB03oA2gIR0CorIywW3z+dX2UKGgGR0CR1iH6dlNDaAdN6ANoCEdAqK17sjVx0nV9lChoBkdAkf/aV+qioWgHTegDaAhHQKixOCFsYVJ1fZQoaAZHQJH+kq0+kgxoB03oA2gIR0CouF5YxL00dX2UKGgGR0CRplMnJDE4aAdN6ANoCEdAqLiMsUZeiXV9lChoBkdAgnhFtTDO1WgHTegDaAhHQKi5fCIDYAd1fZQoaAZHQJFJUd6sySFoB03oA2gIR0CovTNqgyuZdX2UKGgGR0CMvfScbzbwaAdN6ANoCEdAqMRnnMdLhHV9lChoBkdAkwVM8gZCOWgHTegDaAhHQKjElHoX9BN1fZQoaAZHQJDm7Td+G49oB03oA2gIR0CoxZN9H+ZPdX2UKGgGR0CRKjXZXdTHaAdN6ANoCEdAqMk7W7OE/XV9lChoBkdAkiIOBtk4FWgHTegDaAhHQKjQhU1AJLN1fZQoaAZHQInxxB1LamJoB03oA2gIR0Co0LVM23rldX2UKGgGR0COOWbDuSfUaAdN6ANoCEdAqNGjuBtk4HV9lChoBkdAkLI8Iu5BkmgHTegDaAhHQKjVZul41P51fZQoaAZHQJP1S6ErXlNoB03oA2gIR0Co3LoegctHdX2UKGgGR0CU6gEd/8VIaAdN6ANoCEdAqNztzfaYeHV9lChoBkdAgcyuoHcDbWgHTegDaAhHQKjd5Ud7v5R1fZQoaAZHQISodZLZi/hoB03oA2gIR0Co4bo8ZDRddX2UKGgGR0CT2GTQVsUJaAdN6ANoCEdAqOjam0mdAnV9lChoBkdAkz5DFId2gWgHTegDaAhHQKjpDS619fF1fZQoaAZHQJUR0Lc9GI9oB03oA2gIR0Co6fzPa+N+dX2UKGgGR0CT95uQZGayaAdN6ANoCEdAqO2wwVTJhnV9lChoBkdAkdL4LkS26WgHTegDaAhHQKj07kWAPNF1fZQoaAZHQIt9ePcSGrVoB03oA2gIR0Co9R/IsAeadX2UKGgGR0CBRGFkhA4XaAdN6ANoCEdAqPYVlTWGy3V9lChoBkdAih22eYlY2mgHTegDaAhHQKj56XzDn/11fZQoaAZHQIQPwWBSUC9oB03oA2gIR0CpAWYYrJ8wdX2UKGgGR0COoxA0sOG1aAdN6ANoCEdAqQGUX1rZanV9lChoBkdAjZ+wp4KQaWgHTegDaAhHQKkCiCvovBd1fZQoaAZHQHzev4REnb9oB03oA2gIR0CpBjz544ZNdX2UKGgGR0COQTK4hEBsaAdN6ANoCEdAqQ1oxzq8lHV9lChoBkdAjJdkRSP2f2gHTegDaAhHQKkNl7O3UhF1fZQoaAZHQIXuF5dGAkNoB03oA2gIR0CpDpNelbeNdX2UKGgGR0CTeXho/RmcaAdN6ANoCEdAqRJD8DSw4nV9lChoBkdAkLGVlPJq7GgHTegDaAhHQKkZZpyp71J1fZQoaAZHQJAvoSUTtb9oB03oA2gIR0CpGZjvmYBvdX2UKGgGR0CQbOxbSqlxaAdN6ANoCEdAqRqXI2fkFXV9lChoBkdAiZ5L9VFQVWgHTegDaAhHQKkeTvcafjF1fZQoaAZHQJA9LcvduYRoB03oA2gIR0CpJX4MOPNndX2UKGgGR0CRDo6KtPpIaAdN6ANoCEdAqSWrBwdbPnV9lChoBkdAkLYw2Q4jr2gHTegDaAhHQKkmstbLU1B1fZQoaAZHQJIKRH7P6bhoB03oA2gIR0CpKlSOJcgRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (953 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 992.5490128385369, "std_reward": 157.51447312848734, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T11:34:02.264029"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6cf9e04a70f6c324c38e9645b748a92f3cc6413d8e59582935e33cb163bd655
3
+ size 2521