File size: 3,096 Bytes
a83e129
 
 
 
 
 
 
 
dd7f1ec
a83e129
 
 
 
 
 
 
 
 
 
ff12284
 
 
09f1ec7
ff12284
09f1ec7
 
 
 
 
ff12284
a83e129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83333aa
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- cerebras
- LLM
inference: false
---

# Instruction-tuned Cerebras GPT 111M

The smallest of [cerebras GPT models](https://huggingface.co/cerebras) with only 111M parameters instruction fine-tuned.

## Model Description

Instruction fine-tuned [cerebras-GPT-111M](https://huggingface.co/cerebras/Cerebras-GPT-111M)

## Evaluation

The model has been evaluated with Huggingface's Open LLM leaderboard. Have a look at the leaderboard for more details: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
The performance of the instruction fine-tuned model does improve compared to the cerebras base model by about 5.7% (average score):

Model                                          	| Average 	| ARC (25-shot) 	| HellaSwag (10-shot)  	| MMLU (5-shot)  	| TruthfulQA (0-shot)
--- | --- | --- | --- | --- | --- 
SebastianSchramm/Cerebras-GPT-111M-instruction 	| 31.6      	| 24.3            	| 26.2                  	| 26.5            	| 49.5                  	
cerebras/Cerebras-GPT-111M                     	| 29.9      	| 20              	| 26.7                  	| 26.7            	| 46.3                  	
||||||

## Training data

The model was fine-tuned with the following data: [alpaca_gpt4_data](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/blob/main/data/alpaca_gpt4_data.json) (data generated by GPT-4 using Alpaca prompts for fine-tuning LLMs) and [alpaca_data_cleaned](https://github.com/tloen/alpaca-lora/blob/a3027fea37c2087b8b0131b21a4cd948bbdcd9e0/alpaca_data_cleaned.json).

## Prompt template

Fine-tuning was performed with the promp template from [stanford alpaca](https://github.com/tatsu-lab/stanford_alpaca):

```python
PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}
```

## Usage

It is recommended to format input according to the prompt template mentioned above during inference for best results.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SebastianSchramm__Cerebras-GPT-111M-instruction)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.37   |
| ARC (25-shot)         | 24.4          |
| HellaSwag (10-shot)   | 26.05    |
| MMLU (5-shot)         | 25.87         |
| TruthfulQA (0-shot)   | 49.46   |
| Winogrande (5-shot)   | 51.62   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 0.17         |