File size: 36,157 Bytes
1796252 9fa6179 1796252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
base_model: microsoft/layoutlmv2-base-uncased
model-index:
- name: lmv2-g-invoice-993-doc-08-02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lmv2-g-invoice-993-doc-08-02
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3517
- Due Date Precision: 0.9277
- Due Date Recall: 0.875
- Due Date F1: 0.9006
- Due Date Number: 88
- Invoice Date Precision: 0.8182
- Invoice Date Recall: 0.9172
- Invoice Date F1: 0.8649
- Invoice Date Number: 157
- Invoice Id Precision: 0.8993
- Invoice Id Recall: 0.8741
- Invoice Id F1: 0.8865
- Invoice Id Number: 143
- Payment Terms Precision: 0.5469
- Payment Terms Recall: 0.7143
- Payment Terms F1: 0.6195
- Payment Terms Number: 49
- Receiver Address Precision: 0.7249
- Receiver Address Recall: 0.7697
- Receiver Address F1: 0.7466
- Receiver Address Number: 178
- Receiver Name Precision: 0.8270
- Receiver Name Recall: 0.8596
- Receiver Name F1: 0.8430
- Receiver Name Number: 178
- Sub Total Precision: 0.8624
- Sub Total Recall: 0.8704
- Sub Total F1: 0.8664
- Sub Total Number: 108
- Supplier Address Precision: 0.7665
- Supplier Address Recall: 0.7711
- Supplier Address F1: 0.7688
- Supplier Address Number: 166
- Supplier Name Precision: 0.7567
- Supplier Name Recall: 0.8057
- Supplier Name F1: 0.7804
- Supplier Name Number: 247
- Tax Amount Precision: 0.8333
- Tax Amount Recall: 0.8209
- Tax Amount F1: 0.8271
- Tax Amount Number: 67
- Total Precision: 0.8061
- Total Recall: 0.7557
- Total F1: 0.7801
- Total Number: 176
- Overall Precision: 0.7970
- Overall Recall: 0.8221
- Overall F1: 0.8094
- Overall Accuracy: 0.9572
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Due Date Precision | Due Date Recall | Due Date F1 | Due Date Number | Invoice Date Precision | Invoice Date Recall | Invoice Date F1 | Invoice Date Number | Invoice Id Precision | Invoice Id Recall | Invoice Id F1 | Invoice Id Number | Payment Terms Precision | Payment Terms Recall | Payment Terms F1 | Payment Terms Number | Receiver Address Precision | Receiver Address Recall | Receiver Address F1 | Receiver Address Number | Receiver Name Precision | Receiver Name Recall | Receiver Name F1 | Receiver Name Number | Sub Total Precision | Sub Total Recall | Sub Total F1 | Sub Total Number | Supplier Address Precision | Supplier Address Recall | Supplier Address F1 | Supplier Address Number | Supplier Name Precision | Supplier Name Recall | Supplier Name F1 | Supplier Name Number | Tax Amount Precision | Tax Amount Recall | Tax Amount F1 | Tax Amount Number | Total Precision | Total Recall | Total F1 | Total Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.2159 | 1.0 | 794 | 0.5347 | 0.0 | 0.0 | 0.0 | 88 | 0.4828 | 0.8025 | 0.6029 | 157 | 0.5247 | 0.5944 | 0.5574 | 143 | 0.0 | 0.0 | 0.0 | 49 | 0.3738 | 0.4326 | 0.4010 | 178 | 0.3780 | 0.2697 | 0.3148 | 178 | 0.0 | 0.0 | 0.0 | 108 | 0.4375 | 0.5060 | 0.4693 | 166 | 0.4348 | 0.3239 | 0.3712 | 247 | 0.0 | 0.0 | 0.0 | 67 | 0.5278 | 0.1080 | 0.1792 | 176 | 0.4443 | 0.3333 | 0.3809 | 0.9071 |
| 0.4121 | 2.0 | 1588 | 0.3147 | 0.0 | 0.0 | 0.0 | 88 | 0.5353 | 0.9172 | 0.6761 | 157 | 0.7355 | 0.6224 | 0.6742 | 143 | 0.2245 | 0.4490 | 0.2993 | 49 | 0.5707 | 0.6573 | 0.6110 | 178 | 0.7457 | 0.7247 | 0.7350 | 178 | 0.7377 | 0.4167 | 0.5325 | 108 | 0.5802 | 0.7410 | 0.6508 | 166 | 0.6703 | 0.7490 | 0.7075 | 247 | 0.0 | 0.0 | 0.0 | 67 | 0.4639 | 0.8409 | 0.5980 | 176 | 0.5779 | 0.6435 | 0.6089 | 0.9340 |
| 0.2248 | 3.0 | 2382 | 0.2087 | 0.8519 | 0.7841 | 0.8166 | 88 | 0.7849 | 0.9299 | 0.8513 | 157 | 0.8182 | 0.8182 | 0.8182 | 143 | 0.5179 | 0.5918 | 0.5524 | 49 | 0.5799 | 0.7135 | 0.6398 | 178 | 0.8192 | 0.8146 | 0.8169 | 178 | 0.8022 | 0.6759 | 0.7337 | 108 | 0.5990 | 0.7470 | 0.6649 | 166 | 0.6522 | 0.7895 | 0.7143 | 247 | 0.8103 | 0.7015 | 0.752 | 67 | 0.7444 | 0.7614 | 0.7528 | 176 | 0.7107 | 0.7746 | 0.7412 | 0.9532 |
| 0.1303 | 4.0 | 3176 | 0.2286 | 0.8280 | 0.875 | 0.8508 | 88 | 0.8671 | 0.8726 | 0.8698 | 157 | 0.8 | 0.8392 | 0.8191 | 143 | 0.3976 | 0.6735 | 0.5 | 49 | 0.6474 | 0.6910 | 0.6685 | 178 | 0.8054 | 0.8371 | 0.8209 | 178 | 0.75 | 0.75 | 0.75 | 108 | 0.6467 | 0.6506 | 0.6486 | 166 | 0.7143 | 0.7895 | 0.7500 | 247 | 0.8333 | 0.7463 | 0.7874 | 67 | 0.7344 | 0.8011 | 0.7663 | 176 | 0.7318 | 0.7797 | 0.7550 | 0.9500 |
| 0.0814 | 5.0 | 3970 | 0.2354 | 0.8444 | 0.8636 | 0.8539 | 88 | 0.8780 | 0.9172 | 0.8972 | 157 | 0.8212 | 0.8671 | 0.8435 | 143 | 0.3908 | 0.6939 | 0.5 | 49 | 0.7174 | 0.7416 | 0.7293 | 178 | 0.8418 | 0.8371 | 0.8394 | 178 | 0.6935 | 0.7963 | 0.7414 | 108 | 0.7377 | 0.8133 | 0.7736 | 166 | 0.7118 | 0.8300 | 0.7664 | 247 | 0.6579 | 0.7463 | 0.6993 | 67 | 0.7553 | 0.8068 | 0.7802 | 176 | 0.7459 | 0.8202 | 0.7813 | 0.9545 |
| 0.0604 | 6.0 | 4764 | 0.2217 | 0.8333 | 0.9091 | 0.8696 | 88 | 0.875 | 0.8917 | 0.8833 | 157 | 0.8414 | 0.8531 | 0.8472 | 143 | 0.4848 | 0.6531 | 0.5565 | 49 | 0.6716 | 0.7697 | 0.7173 | 178 | 0.8098 | 0.8371 | 0.8232 | 178 | 0.8173 | 0.7870 | 0.8019 | 108 | 0.7098 | 0.8253 | 0.7632 | 166 | 0.7148 | 0.7611 | 0.7373 | 247 | 0.6786 | 0.8507 | 0.7550 | 67 | 0.7514 | 0.7898 | 0.7701 | 176 | 0.7518 | 0.8131 | 0.7812 | 0.9541 |
| 0.0478 | 7.0 | 5558 | 0.2268 | 0.8387 | 0.8864 | 0.8619 | 88 | 0.8286 | 0.9236 | 0.8735 | 157 | 0.8129 | 0.8811 | 0.8456 | 143 | 0.4384 | 0.6531 | 0.5246 | 49 | 0.6579 | 0.7022 | 0.6793 | 178 | 0.8258 | 0.8258 | 0.8258 | 178 | 0.8302 | 0.8148 | 0.8224 | 108 | 0.5957 | 0.6747 | 0.6328 | 166 | 0.6926 | 0.7206 | 0.7063 | 247 | 0.8529 | 0.8657 | 0.8593 | 67 | 0.8117 | 0.7102 | 0.7576 | 176 | 0.7416 | 0.7797 | 0.7602 | 0.9550 |
| 0.0361 | 8.0 | 6352 | 0.2785 | 0.6949 | 0.9318 | 0.7961 | 88 | 0.8305 | 0.9363 | 0.8802 | 157 | 0.8089 | 0.8881 | 0.8467 | 143 | 0.5441 | 0.7551 | 0.6325 | 49 | 0.6919 | 0.7697 | 0.7287 | 178 | 0.8315 | 0.8315 | 0.8315 | 178 | 0.7561 | 0.8611 | 0.8052 | 108 | 0.7253 | 0.7952 | 0.7586 | 166 | 0.6754 | 0.8340 | 0.7464 | 247 | 0.7887 | 0.8358 | 0.8116 | 67 | 0.7917 | 0.7557 | 0.7733 | 176 | 0.7438 | 0.8337 | 0.7862 | 0.9520 |
| 0.0283 | 9.0 | 7146 | 0.2838 | 0.8404 | 0.8977 | 0.8681 | 88 | 0.8412 | 0.9108 | 0.8746 | 157 | 0.8667 | 0.8182 | 0.8417 | 143 | 0.6066 | 0.7551 | 0.6727 | 49 | 0.7213 | 0.7416 | 0.7313 | 178 | 0.8644 | 0.8596 | 0.8620 | 178 | 0.8511 | 0.7407 | 0.7921 | 108 | 0.7135 | 0.7952 | 0.7521 | 166 | 0.7530 | 0.7530 | 0.7530 | 247 | 0.6522 | 0.8955 | 0.7547 | 67 | 0.8034 | 0.5341 | 0.6416 | 176 | 0.7801 | 0.7791 | 0.7796 | 0.9553 |
| 0.0253 | 10.0 | 7940 | 0.3362 | 0.7217 | 0.9432 | 0.8177 | 88 | 0.8882 | 0.9108 | 0.8994 | 157 | 0.8403 | 0.8462 | 0.8432 | 143 | 0.3980 | 0.7959 | 0.5306 | 49 | 0.6703 | 0.6966 | 0.6832 | 178 | 0.8042 | 0.8539 | 0.8283 | 178 | 0.8462 | 0.8148 | 0.8302 | 108 | 0.6667 | 0.8193 | 0.7351 | 166 | 0.7173 | 0.8219 | 0.7660 | 247 | 0.8060 | 0.8060 | 0.8060 | 67 | 0.7460 | 0.8011 | 0.7726 | 176 | 0.7384 | 0.8247 | 0.7791 | 0.9385 |
| 0.0201 | 11.0 | 8734 | 0.3310 | 0.8247 | 0.9091 | 0.8649 | 88 | 0.8820 | 0.9045 | 0.8931 | 157 | 0.8832 | 0.8462 | 0.8643 | 143 | 0.5072 | 0.7143 | 0.5932 | 49 | 0.7294 | 0.6966 | 0.7126 | 178 | 0.8314 | 0.8034 | 0.8171 | 178 | 0.8165 | 0.8241 | 0.8203 | 108 | 0.6618 | 0.8133 | 0.7297 | 166 | 0.7399 | 0.8178 | 0.7769 | 247 | 0.8281 | 0.7910 | 0.8092 | 67 | 0.75 | 0.7330 | 0.7414 | 176 | 0.7697 | 0.8048 | 0.7868 | 0.9529 |
| 0.0239 | 12.0 | 9528 | 0.2936 | 0.8736 | 0.8636 | 0.8686 | 88 | 0.8614 | 0.9108 | 0.8854 | 157 | 0.8955 | 0.8392 | 0.8664 | 143 | 0.5373 | 0.7347 | 0.6207 | 49 | 0.6818 | 0.7584 | 0.7181 | 178 | 0.8398 | 0.8539 | 0.8468 | 178 | 0.83 | 0.7685 | 0.7981 | 108 | 0.7529 | 0.7892 | 0.7706 | 166 | 0.7674 | 0.8016 | 0.7842 | 247 | 0.8966 | 0.7761 | 0.8320 | 67 | 0.7527 | 0.7784 | 0.7654 | 176 | 0.7869 | 0.8112 | 0.7989 | 0.9565 |
| 0.0229 | 13.0 | 10322 | 0.3042 | 0.8791 | 0.9091 | 0.8939 | 88 | 0.8735 | 0.9236 | 0.8978 | 157 | 0.8662 | 0.8601 | 0.8632 | 143 | 0.6613 | 0.8367 | 0.7387 | 49 | 0.7068 | 0.7584 | 0.7317 | 178 | 0.8324 | 0.8652 | 0.8485 | 178 | 0.8252 | 0.7870 | 0.8057 | 108 | 0.7278 | 0.7892 | 0.7572 | 166 | 0.7751 | 0.7814 | 0.7782 | 247 | 0.8621 | 0.7463 | 0.8000 | 67 | 0.7683 | 0.7159 | 0.7412 | 176 | 0.7938 | 0.8112 | 0.8024 | 0.9580 |
| 0.0165 | 14.0 | 11116 | 0.2715 | 0.9111 | 0.9318 | 0.9213 | 88 | 0.8802 | 0.9363 | 0.9074 | 157 | 0.8671 | 0.8671 | 0.8671 | 143 | 0.5211 | 0.7551 | 0.6167 | 49 | 0.7053 | 0.7528 | 0.7283 | 178 | 0.8115 | 0.8708 | 0.8401 | 178 | 0.9158 | 0.8056 | 0.8571 | 108 | 0.7196 | 0.8193 | 0.7662 | 166 | 0.7348 | 0.7854 | 0.7593 | 247 | 0.7733 | 0.8657 | 0.8169 | 67 | 0.7943 | 0.7898 | 0.7920 | 176 | 0.7836 | 0.8304 | 0.8064 | 0.9600 |
| 0.0221 | 15.0 | 11910 | 0.2866 | 0.8161 | 0.8068 | 0.8114 | 88 | 0.8720 | 0.9108 | 0.8910 | 157 | 0.8986 | 0.8671 | 0.8826 | 143 | 0.4722 | 0.6939 | 0.5620 | 49 | 0.7204 | 0.7528 | 0.7363 | 178 | 0.8232 | 0.8371 | 0.8301 | 178 | 0.8571 | 0.8333 | 0.8451 | 108 | 0.7216 | 0.7651 | 0.7427 | 166 | 0.7293 | 0.7854 | 0.7563 | 247 | 0.8868 | 0.7015 | 0.7833 | 67 | 0.8255 | 0.6989 | 0.7569 | 176 | 0.7838 | 0.7938 | 0.7888 | 0.9552 |
| 0.0173 | 16.0 | 12704 | 0.3234 | 0.7685 | 0.9432 | 0.8469 | 88 | 0.8512 | 0.9108 | 0.88 | 157 | 0.8288 | 0.8462 | 0.8374 | 143 | 0.4474 | 0.6939 | 0.544 | 49 | 0.6915 | 0.7303 | 0.7104 | 178 | 0.8365 | 0.7472 | 0.7893 | 178 | 0.6596 | 0.8611 | 0.7470 | 108 | 0.6372 | 0.8675 | 0.7347 | 166 | 0.6823 | 0.8259 | 0.7473 | 247 | 0.7333 | 0.8209 | 0.7746 | 67 | 0.7513 | 0.8068 | 0.7781 | 176 | 0.7223 | 0.8234 | 0.7695 | 0.9532 |
| 0.0159 | 17.0 | 13498 | 0.3301 | 0.8652 | 0.875 | 0.8701 | 88 | 0.8480 | 0.9236 | 0.8841 | 157 | 0.8921 | 0.8671 | 0.8794 | 143 | 0.5522 | 0.7551 | 0.6379 | 49 | 0.7027 | 0.7303 | 0.7163 | 178 | 0.7989 | 0.8483 | 0.8229 | 178 | 0.7863 | 0.8519 | 0.8178 | 108 | 0.7711 | 0.7711 | 0.7711 | 166 | 0.6877 | 0.7935 | 0.7368 | 247 | 0.8116 | 0.8358 | 0.8235 | 67 | 0.7976 | 0.7614 | 0.7791 | 176 | 0.7720 | 0.8157 | 0.7933 | 0.9554 |
| 0.0156 | 18.0 | 14292 | 0.3390 | 0.8261 | 0.8636 | 0.8444 | 88 | 0.8412 | 0.9108 | 0.8746 | 157 | 0.8794 | 0.8671 | 0.8732 | 143 | 0.5968 | 0.7551 | 0.6667 | 49 | 0.6682 | 0.7921 | 0.7249 | 178 | 0.7967 | 0.8146 | 0.8056 | 178 | 0.9195 | 0.7407 | 0.8205 | 108 | 0.7321 | 0.7410 | 0.7365 | 166 | 0.7333 | 0.7571 | 0.7450 | 247 | 0.8197 | 0.7463 | 0.7813 | 67 | 0.7797 | 0.7841 | 0.7819 | 176 | 0.7746 | 0.7990 | 0.7866 | 0.9548 |
| 0.0125 | 19.0 | 15086 | 0.3517 | 0.9277 | 0.875 | 0.9006 | 88 | 0.8182 | 0.9172 | 0.8649 | 157 | 0.8993 | 0.8741 | 0.8865 | 143 | 0.5469 | 0.7143 | 0.6195 | 49 | 0.7249 | 0.7697 | 0.7466 | 178 | 0.8270 | 0.8596 | 0.8430 | 178 | 0.8624 | 0.8704 | 0.8664 | 108 | 0.7665 | 0.7711 | 0.7688 | 166 | 0.7567 | 0.8057 | 0.7804 | 247 | 0.8333 | 0.8209 | 0.8271 | 67 | 0.8061 | 0.7557 | 0.7801 | 176 | 0.7970 | 0.8221 | 0.8094 | 0.9572 |
| 0.0132 | 20.0 | 15880 | 0.3682 | 0.9241 | 0.8295 | 0.8743 | 88 | 0.8631 | 0.9236 | 0.8923 | 157 | 0.9030 | 0.8462 | 0.8736 | 143 | 0.55 | 0.6735 | 0.6055 | 49 | 0.6818 | 0.7584 | 0.7181 | 178 | 0.8488 | 0.8202 | 0.8343 | 178 | 0.8190 | 0.7963 | 0.8075 | 108 | 0.7081 | 0.7892 | 0.7464 | 166 | 0.7764 | 0.7449 | 0.7603 | 247 | 0.7160 | 0.8657 | 0.7838 | 67 | 0.8110 | 0.7557 | 0.7824 | 176 | 0.7865 | 0.7996 | 0.7930 | 0.9543 |
| 0.0112 | 21.0 | 16674 | 0.3974 | 0.8721 | 0.8523 | 0.8621 | 88 | 0.8249 | 0.9299 | 0.8743 | 157 | 0.8929 | 0.8741 | 0.8834 | 143 | 0.5205 | 0.7755 | 0.6230 | 49 | 0.6569 | 0.7528 | 0.7016 | 178 | 0.7677 | 0.8539 | 0.8085 | 178 | 0.8246 | 0.8704 | 0.8468 | 108 | 0.7326 | 0.7590 | 0.7456 | 166 | 0.7273 | 0.7773 | 0.7515 | 247 | 0.7746 | 0.8209 | 0.7971 | 67 | 0.7852 | 0.6648 | 0.72 | 176 | 0.7609 | 0.8054 | 0.7825 | 0.9513 |
| 0.0157 | 22.0 | 17468 | 0.3658 | 0.9390 | 0.875 | 0.9059 | 88 | 0.8412 | 0.9108 | 0.8746 | 157 | 0.9065 | 0.8811 | 0.8936 | 143 | 0.5075 | 0.6939 | 0.5862 | 49 | 0.6837 | 0.7528 | 0.7166 | 178 | 0.8415 | 0.8652 | 0.8532 | 178 | 0.875 | 0.7778 | 0.8235 | 108 | 0.6473 | 0.8072 | 0.7185 | 166 | 0.7540 | 0.7692 | 0.7615 | 247 | 0.8621 | 0.7463 | 0.8000 | 67 | 0.7949 | 0.7045 | 0.7470 | 176 | 0.7783 | 0.8028 | 0.7904 | 0.9525 |
| 0.0104 | 23.0 | 18262 | 0.3755 | 0.9302 | 0.9091 | 0.9195 | 88 | 0.8727 | 0.9172 | 0.8944 | 157 | 0.8477 | 0.8951 | 0.8707 | 143 | 0.5893 | 0.6735 | 0.6286 | 49 | 0.5947 | 0.7584 | 0.6667 | 178 | 0.7023 | 0.8483 | 0.7684 | 178 | 0.7787 | 0.8796 | 0.8261 | 108 | 0.7321 | 0.7410 | 0.7365 | 166 | 0.75 | 0.7409 | 0.7454 | 247 | 0.7714 | 0.8060 | 0.7883 | 67 | 0.8057 | 0.8011 | 0.8034 | 176 | 0.7546 | 0.8137 | 0.7831 | 0.9502 |
| 0.018 | 24.0 | 19056 | 0.3719 | 0.8571 | 0.8182 | 0.8372 | 88 | 0.8683 | 0.9236 | 0.8951 | 157 | 0.8690 | 0.8811 | 0.8750 | 143 | 0.5781 | 0.7551 | 0.6549 | 49 | 0.6604 | 0.7865 | 0.7179 | 178 | 0.7937 | 0.8427 | 0.8174 | 178 | 0.9310 | 0.75 | 0.8308 | 108 | 0.7363 | 0.8072 | 0.7701 | 166 | 0.7412 | 0.7652 | 0.7530 | 247 | 0.8596 | 0.7313 | 0.7903 | 67 | 0.7765 | 0.75 | 0.7630 | 176 | 0.7785 | 0.8060 | 0.7920 | 0.9553 |
| 0.0088 | 25.0 | 19850 | 0.3638 | 0.8876 | 0.8977 | 0.8927 | 88 | 0.8902 | 0.9299 | 0.9097 | 157 | 0.8301 | 0.8881 | 0.8581 | 143 | 0.6032 | 0.7755 | 0.6786 | 49 | 0.6853 | 0.7584 | 0.72 | 178 | 0.8683 | 0.8146 | 0.8406 | 178 | 0.9111 | 0.7593 | 0.8283 | 108 | 0.6952 | 0.7831 | 0.7365 | 166 | 0.74 | 0.7490 | 0.7445 | 247 | 0.7945 | 0.8657 | 0.8286 | 67 | 0.8068 | 0.8068 | 0.8068 | 176 | 0.7874 | 0.8137 | 0.8004 | 0.9561 |
| 0.009 | 26.0 | 20644 | 0.3683 | 0.9146 | 0.8523 | 0.8824 | 88 | 0.8229 | 0.9172 | 0.8675 | 157 | 0.9007 | 0.8881 | 0.8944 | 143 | 0.6607 | 0.7551 | 0.7048 | 49 | 0.7316 | 0.7809 | 0.7554 | 178 | 0.8441 | 0.8820 | 0.8626 | 178 | 0.8317 | 0.7778 | 0.8038 | 108 | 0.7310 | 0.7530 | 0.7418 | 166 | 0.7576 | 0.8097 | 0.7828 | 247 | 0.8286 | 0.8657 | 0.8467 | 67 | 0.7791 | 0.7614 | 0.7701 | 176 | 0.7960 | 0.8221 | 0.8088 | 0.9584 |
| 0.0105 | 27.0 | 21438 | 0.3624 | 0.8280 | 0.875 | 0.8508 | 88 | 0.8352 | 0.9363 | 0.8829 | 157 | 0.8592 | 0.8531 | 0.8561 | 143 | 0.4795 | 0.7143 | 0.5738 | 49 | 0.7158 | 0.7360 | 0.7258 | 178 | 0.8197 | 0.8427 | 0.8310 | 178 | 0.7068 | 0.8704 | 0.7801 | 108 | 0.6878 | 0.7831 | 0.7324 | 166 | 0.7741 | 0.7490 | 0.7613 | 247 | 0.8088 | 0.8209 | 0.8148 | 67 | 0.7644 | 0.7557 | 0.76 | 176 | 0.7616 | 0.8086 | 0.7844 | 0.9552 |
| 0.0088 | 28.0 | 22232 | 0.3755 | 0.7938 | 0.875 | 0.8324 | 88 | 0.8882 | 0.9108 | 0.8994 | 157 | 0.8705 | 0.8462 | 0.8582 | 143 | 0.6481 | 0.7143 | 0.6796 | 49 | 0.6618 | 0.7697 | 0.7117 | 178 | 0.8370 | 0.8652 | 0.8508 | 178 | 0.9277 | 0.7130 | 0.8063 | 108 | 0.7414 | 0.7771 | 0.7588 | 166 | 0.7603 | 0.8219 | 0.7899 | 247 | 0.94 | 0.7015 | 0.8034 | 67 | 0.7901 | 0.7273 | 0.7574 | 176 | 0.7928 | 0.8035 | 0.7981 | 0.9559 |
| 0.0101 | 29.0 | 23026 | 0.4108 | 0.8587 | 0.8977 | 0.8778 | 88 | 0.8765 | 0.9045 | 0.8903 | 157 | 0.8676 | 0.8252 | 0.8459 | 143 | 0.5286 | 0.7551 | 0.6218 | 49 | 0.7005 | 0.7360 | 0.7178 | 178 | 0.8162 | 0.8483 | 0.8320 | 178 | 0.8646 | 0.7685 | 0.8137 | 108 | 0.7225 | 0.7530 | 0.7375 | 166 | 0.7236 | 0.8057 | 0.7625 | 247 | 0.9423 | 0.7313 | 0.8235 | 67 | 0.7870 | 0.7557 | 0.7710 | 176 | 0.7808 | 0.8009 | 0.7907 | 0.9526 |
| 0.0087 | 30.0 | 23820 | 0.3898 | 0.8764 | 0.8864 | 0.8814 | 88 | 0.9114 | 0.9172 | 0.9143 | 157 | 0.9015 | 0.8322 | 0.8655 | 143 | 0.5333 | 0.6531 | 0.5872 | 49 | 0.6502 | 0.7416 | 0.6929 | 178 | 0.8101 | 0.8146 | 0.8123 | 178 | 0.9529 | 0.75 | 0.8394 | 108 | 0.7922 | 0.7349 | 0.7625 | 166 | 0.7635 | 0.7449 | 0.7541 | 247 | 0.8947 | 0.7612 | 0.8226 | 67 | 0.7702 | 0.7045 | 0.7359 | 176 | 0.7979 | 0.7784 | 0.7880 | 0.9533 |
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|