update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: lmv2-2022-05-24
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# lmv2-2022-05-24
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0484
|
18 |
+
- Address Precision: 0.9474
|
19 |
+
- Address Recall: 1.0
|
20 |
+
- Address F1: 0.9730
|
21 |
+
- Address Number: 18
|
22 |
+
- Business Name Precision: 1.0
|
23 |
+
- Business Name Recall: 1.0
|
24 |
+
- Business Name F1: 1.0
|
25 |
+
- Business Name Number: 13
|
26 |
+
- City State Zip Code Precision: 0.8947
|
27 |
+
- City State Zip Code Recall: 0.8947
|
28 |
+
- City State Zip Code F1: 0.8947
|
29 |
+
- City State Zip Code Number: 19
|
30 |
+
- Ein Precision: 1.0
|
31 |
+
- Ein Recall: 1.0
|
32 |
+
- Ein F1: 1.0
|
33 |
+
- Ein Number: 4
|
34 |
+
- List Account Number Precision: 0.6
|
35 |
+
- List Account Number Recall: 0.75
|
36 |
+
- List Account Number F1: 0.6667
|
37 |
+
- List Account Number Number: 4
|
38 |
+
- Name Precision: 1.0
|
39 |
+
- Name Recall: 0.9444
|
40 |
+
- Name F1: 0.9714
|
41 |
+
- Name Number: 18
|
42 |
+
- Ssn Precision: 1.0
|
43 |
+
- Ssn Recall: 1.0
|
44 |
+
- Ssn F1: 1.0
|
45 |
+
- Ssn Number: 8
|
46 |
+
- Overall Precision: 0.9412
|
47 |
+
- Overall Recall: 0.9524
|
48 |
+
- Overall F1: 0.9467
|
49 |
+
- Overall Accuracy: 0.9979
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 4e-05
|
69 |
+
- train_batch_size: 1
|
70 |
+
- eval_batch_size: 1
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: constant
|
74 |
+
- num_epochs: 30
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Business Name Precision | Business Name Recall | Business Name F1 | Business Name Number | City State Zip Code Precision | City State Zip Code Recall | City State Zip Code F1 | City State Zip Code Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | List Account Number Precision | List Account Number Recall | List Account Number F1 | List Account Number Number | Name Precision | Name Recall | Name F1 | Name Number | Ssn Precision | Ssn Recall | Ssn F1 | Ssn Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:-------------:|:----------:|:------:|:----------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
80 |
+
| 1.9388 | 1.0 | 79 | 1.5568 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 0.9465 |
|
81 |
+
| 1.3777 | 2.0 | 158 | 1.1259 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 0.9465 |
|
82 |
+
| 0.9629 | 3.0 | 237 | 0.7497 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 0.9465 |
|
83 |
+
| 0.6292 | 4.0 | 316 | 0.4818 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 18 | 0.1944 | 0.875 | 0.3182 | 8 | 0.1944 | 0.0833 | 0.1167 | 0.9523 |
|
84 |
+
| 0.3952 | 5.0 | 395 | 0.2982 | 0.2424 | 0.8889 | 0.3810 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.1111 | 0.1053 | 0.1081 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 4 | 0.0 | 0.0 | 0.0 | 18 | 0.6364 | 0.875 | 0.7368 | 8 | 0.2632 | 0.2976 | 0.2793 | 0.9660 |
|
85 |
+
| 0.2675 | 6.0 | 474 | 0.2183 | 1.0 | 0.9444 | 0.9714 | 18 | 0.0 | 0.0 | 0.0 | 13 | 0.8824 | 0.7895 | 0.8333 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.1905 | 0.4444 | 0.2667 | 18 | 0.5714 | 1.0 | 0.7273 | 8 | 0.5204 | 0.6071 | 0.5604 | 0.9810 |
|
86 |
+
| 0.2095 | 7.0 | 553 | 0.1990 | 1.0 | 0.9444 | 0.9714 | 18 | 0.0833 | 0.0769 | 0.08 | 13 | 0.9375 | 0.7895 | 0.8571 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.75 | 0.75 | 0.75 | 4 | 0.2647 | 0.5 | 0.3462 | 18 | 0.1739 | 1.0 | 0.2963 | 8 | 0.4109 | 0.6310 | 0.4977 | 0.9762 |
|
87 |
+
| 0.1928 | 8.0 | 632 | 0.1704 | 1.0 | 0.9444 | 0.9714 | 18 | 0.3158 | 0.4615 | 0.3750 | 13 | 0.9412 | 0.8421 | 0.8889 | 19 | 0.0 | 0.0 | 0.0 | 4 | 1.0 | 0.75 | 0.8571 | 4 | 0.3214 | 0.5 | 0.3913 | 18 | 0.5385 | 0.875 | 0.6667 | 8 | 0.5979 | 0.6905 | 0.6409 | 0.9849 |
|
88 |
+
| 0.159 | 9.0 | 711 | 0.1339 | 1.0 | 0.9444 | 0.9714 | 18 | 0.45 | 0.6923 | 0.5455 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.25 | 0.75 | 0.375 | 4 | 0.375 | 0.5 | 0.4286 | 18 | 0.2308 | 0.375 | 0.2857 | 8 | 0.5577 | 0.6905 | 0.6170 | 0.9871 |
|
89 |
+
| 0.1314 | 10.0 | 790 | 0.1199 | 0.9444 | 0.9444 | 0.9444 | 18 | 0.8571 | 0.9231 | 0.8889 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.7895 | 0.8333 | 0.8108 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8372 | 0.8571 | 0.8471 | 0.9897 |
|
90 |
+
| 0.1143 | 11.0 | 869 | 0.1127 | 0.9444 | 0.9444 | 0.9444 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.9036 | 0.8929 | 0.8982 | 0.9903 |
|
91 |
+
| 0.1037 | 12.0 | 948 | 0.1039 | 0.85 | 0.9444 | 0.8947 | 18 | 0.9167 | 0.8462 | 0.8800 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.8889 | 0.8889 | 0.8889 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8471 | 0.8571 | 0.8521 | 0.9901 |
|
92 |
+
| 0.0925 | 13.0 | 1027 | 0.1124 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.75 | 0.75 | 0.75 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.5833 | 0.875 | 0.7000 | 8 | 0.9136 | 0.8810 | 0.8970 | 0.9904 |
|
93 |
+
| 0.0863 | 14.0 | 1106 | 0.1077 | 0.9444 | 0.9444 | 0.9444 | 18 | 0.7333 | 0.8462 | 0.7857 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.6154 | 1.0 | 0.7619 | 8 | 0.8488 | 0.8690 | 0.8588 | 0.9916 |
|
94 |
+
| 0.0845 | 15.0 | 1185 | 0.1035 | 0.9444 | 0.9444 | 0.9444 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9412 | 0.8421 | 0.8889 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.5833 | 0.875 | 0.7000 | 8 | 0.8902 | 0.8690 | 0.8795 | 0.9921 |
|
95 |
+
| 0.0735 | 16.0 | 1264 | 0.0866 | 0.6667 | 0.8889 | 0.7619 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8315 | 0.8810 | 0.8555 | 0.9918 |
|
96 |
+
| 0.0714 | 17.0 | 1343 | 0.0781 | 0.9444 | 0.9444 | 0.9444 | 18 | 1.0 | 0.9231 | 0.9600 | 13 | 0.9412 | 0.8421 | 0.8889 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.9012 | 0.8690 | 0.8848 | 0.9921 |
|
97 |
+
| 0.0656 | 18.0 | 1422 | 0.0816 | 0.8947 | 0.9444 | 0.9189 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.9444 | 0.9444 | 0.9444 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8824 | 0.8929 | 0.8876 | 0.9919 |
|
98 |
+
| 0.0602 | 19.0 | 1501 | 0.0770 | 0.8 | 0.8889 | 0.8421 | 18 | 0.8667 | 1.0 | 0.9286 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.9444 | 0.9444 | 0.9444 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8409 | 0.8810 | 0.8605 | 0.9912 |
|
99 |
+
| 0.0516 | 20.0 | 1580 | 0.0710 | 0.8095 | 0.9444 | 0.8718 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.8721 | 0.8929 | 0.8824 | 0.9919 |
|
100 |
+
| 0.0475 | 21.0 | 1659 | 0.0686 | 0.6667 | 1.0 | 0.8 | 18 | 0.5 | 0.6154 | 0.5517 | 13 | 0.9412 | 0.8421 | 0.8889 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 0.9412 | 0.8889 | 0.9143 | 18 | 0.6667 | 1.0 | 0.8 | 8 | 0.7340 | 0.8214 | 0.7753 | 0.9904 |
|
101 |
+
| 0.0431 | 22.0 | 1738 | 0.0715 | 0.8095 | 0.9444 | 0.8718 | 18 | 0.9286 | 1.0 | 0.9630 | 13 | 0.8421 | 0.8421 | 0.8421 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.75 | 0.75 | 0.75 | 4 | 0.9444 | 0.9444 | 0.9444 | 18 | 0.3529 | 0.75 | 0.48 | 8 | 0.7273 | 0.8571 | 0.7869 | 0.9933 |
|
102 |
+
| 0.0383 | 23.0 | 1817 | 0.0627 | 0.8947 | 0.9444 | 0.9189 | 18 | 0.9231 | 0.9231 | 0.9231 | 13 | 0.8947 | 0.8947 | 0.8947 | 19 | 0.0 | 0.0 | 0.0 | 4 | 0.75 | 0.75 | 0.75 | 4 | 1.0 | 0.8889 | 0.9412 | 18 | 0.5714 | 1.0 | 0.7273 | 8 | 0.8111 | 0.8690 | 0.8391 | 0.9961 |
|
103 |
+
| 0.0327 | 24.0 | 1896 | 0.0683 | 0.8095 | 0.9444 | 0.8718 | 18 | 0.6 | 0.9231 | 0.7273 | 13 | 0.8095 | 0.8947 | 0.8500 | 19 | 0.6 | 0.75 | 0.6667 | 4 | 0.75 | 0.75 | 0.75 | 4 | 0.9412 | 0.8889 | 0.9143 | 18 | 0.8889 | 1.0 | 0.9412 | 8 | 0.7835 | 0.9048 | 0.8398 | 0.9942 |
|
104 |
+
| 0.0292 | 25.0 | 1975 | 0.0674 | 0.8947 | 0.9444 | 0.9189 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.85 | 0.8947 | 0.8718 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 8 | 0.9186 | 0.9405 | 0.9294 | 0.9975 |
|
105 |
+
| 0.0269 | 26.0 | 2054 | 0.0691 | 0.85 | 0.9444 | 0.8947 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 8 | 0.9294 | 0.9405 | 0.9349 | 0.9976 |
|
106 |
+
| 0.024 | 27.0 | 2133 | 0.0484 | 0.9474 | 1.0 | 0.9730 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.8947 | 0.8947 | 0.8947 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 8 | 0.9412 | 0.9524 | 0.9467 | 0.9979 |
|
107 |
+
| 0.0221 | 28.0 | 2212 | 0.0619 | 0.85 | 0.9444 | 0.8947 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 8 | 0.9294 | 0.9405 | 0.9349 | 0.9976 |
|
108 |
+
| 0.0216 | 29.0 | 2291 | 0.0810 | 0.85 | 0.9444 | 0.8947 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 0.875 | 0.9333 | 8 | 0.9286 | 0.9286 | 0.9286 | 0.9960 |
|
109 |
+
| 0.0175 | 30.0 | 2370 | 0.0646 | 0.85 | 0.9444 | 0.8947 | 18 | 1.0 | 1.0 | 1.0 | 13 | 0.9444 | 0.8947 | 0.9189 | 19 | 1.0 | 1.0 | 1.0 | 4 | 0.6 | 0.75 | 0.6667 | 4 | 1.0 | 0.9444 | 0.9714 | 18 | 1.0 | 1.0 | 1.0 | 8 | 0.9294 | 0.9405 | 0.9349 | 0.9976 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.20.0.dev0
|
115 |
+
- Pytorch 1.11.0+cu113
|
116 |
+
- Datasets 2.2.2
|
117 |
+
- Tokenizers 0.12.1
|