Diangle commited on
Commit
40b2001
·
1 Parent(s): b88cf0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -184
README.md CHANGED
@@ -1,227 +1,76 @@
1
  ---
2
- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
- {}
 
 
5
  ---
6
 
7
- # Model Card for Model ID
 
8
 
9
- This is a trained Clip4Clip model to search videos from a text sentence
 
10
 
11
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
 
13
- ## Model Details
14
 
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
-
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Use
37
- To encode text:
38
 
39
  ```python
40
- import torch
41
  import numpy as np
 
42
  from transformers import AutoTokenizer, CLIPTextModelWithProjection
43
 
44
- search_sentence = "a woman drinking coffee looking at the sea"
45
 
46
- my_model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid")
 
 
47
  tokenizer = AutoTokenizer.from_pretrained("Diangle/clip4clip-webvid")
48
 
49
 
50
  inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True)
51
 
52
- outputs = my_model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False)
53
-
54
- text_projection = my_model.state_dict()['text_projection.weight']
 
55
  text_embeds = outputs[1] @ text_projection
56
  final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)]
57
 
58
-
59
  final_output = final_output / final_output.norm(dim=-1, keepdim=True)
60
  final_output = final_output.cpu().detach().numpy()
61
  sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True)
62
- print(sequence_output)
63
  ```
64
 
65
 
66
- ### Direct Use
67
-
68
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Downstream Use [optional]
73
-
74
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
75
-
76
- [More Information Needed]
77
-
78
- ### Out-of-Scope Use
79
-
80
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
81
-
82
- [More Information Needed]
83
-
84
- ## Bias, Risks, and Limitations
85
-
86
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Recommendations
91
-
92
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
93
-
94
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
95
-
96
- ## How to Get Started with the Model
97
-
98
- Use the code below to get started with the model.
99
-
100
- [More Information Needed]
101
-
102
- ## Training Details
103
-
104
- ### Training Data
105
-
106
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
107
-
108
- [More Information Needed]
109
-
110
- ### Training Procedure
111
-
112
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
113
-
114
- #### Preprocessing [optional]
115
-
116
- [More Information Needed]
117
-
118
-
119
- #### Training Hyperparameters
120
-
121
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
122
-
123
- #### Speeds, Sizes, Times [optional]
124
-
125
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
126
-
127
- [More Information Needed]
128
-
129
- ## Evaluation
130
-
131
- <!-- This section describes the evaluation protocols and provides the results. -->
132
-
133
- ### Testing Data, Factors & Metrics
134
-
135
- #### Testing Data
136
-
137
- <!-- This should link to a Data Card if possible. -->
138
-
139
- [More Information Needed]
140
-
141
- #### Factors
142
-
143
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
144
-
145
- [More Information Needed]
146
-
147
- #### Metrics
148
-
149
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
150
-
151
- [More Information Needed]
152
-
153
- ### Results
154
-
155
- [More Information Needed]
156
-
157
- #### Summary
158
-
159
-
160
-
161
- ## Model Examination [optional]
162
-
163
- <!-- Relevant interpretability work for the model goes here -->
164
-
165
- [More Information Needed]
166
-
167
- ## Environmental Impact
168
-
169
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
170
-
171
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
172
-
173
- - **Hardware Type:** [More Information Needed]
174
- - **Hours used:** [More Information Needed]
175
- - **Cloud Provider:** [More Information Needed]
176
- - **Compute Region:** [More Information Needed]
177
- - **Carbon Emitted:** [More Information Needed]
178
-
179
- ## Technical Specifications [optional]
180
-
181
- ### Model Architecture and Objective
182
-
183
- [More Information Needed]
184
-
185
- ### Compute Infrastructure
186
-
187
- [More Information Needed]
188
-
189
- #### Hardware
190
-
191
- [More Information Needed]
192
-
193
- #### Software
194
-
195
- [More Information Needed]
196
-
197
- ## Citation [optional]
198
 
199
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
200
 
201
- **BibTeX:**
202
 
203
- [More Information Needed]
204
 
205
- **APA:**
206
 
207
- [More Information Needed]
208
 
209
- ## Glossary [optional]
210
 
211
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
212
 
213
- [More Information Needed]
214
 
215
- ## More Information [optional]
216
 
217
- [More Information Needed]
218
 
219
- ## Model Card Authors [optional]
220
 
221
- [More Information Needed]
222
 
223
- ## Model Card Contact
224
 
225
- [More Information Needed]
226
 
 
227
 
 
 
1
  ---
2
+ tags:
3
+ - vision
4
+ - clip
5
+ - clip4clip
6
+ - video
7
  ---
8
 
9
+ # Model Card
10
+ ## Details
11
 
12
+ This model was trained via CLIP4Clip (a CLIP-based a CLIP-based video retrival method, based on this [paper](https://arxiv.org/pdf/2104.08860.pdf) and [code](https://github.com/ArrowLuo/CLIP4Clip).
13
+ This model was trained on 150k videos from the [WebVid Dataset](https://m-bain.github.io/webvid-dataset/) (a large-scale dataset of short videos with textual descriptions sourced from the web).
14
 
15
+ We adjucted the weights of the clip model we achieved from our training to the model implameted in [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) and added few changes for the last layers.
16
 
 
17
 
18
+ ### Use with Transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ```python
 
21
  import numpy as np
22
+ import torch
23
  from transformers import AutoTokenizer, CLIPTextModelWithProjection
24
 
 
25
 
26
+ search_sentence = "a basketball player performing a slam dunk"
27
+
28
+ model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid")
29
  tokenizer = AutoTokenizer.from_pretrained("Diangle/clip4clip-webvid")
30
 
31
 
32
  inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True)
33
 
34
+ outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False)
35
+
36
+ # Adding special projection and changing last layers:
37
+ text_projection = model.state_dict()['text_projection.weight']
38
  text_embeds = outputs[1] @ text_projection
39
  final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)]
40
 
41
+ # Normalizing the embeddings:
42
  final_output = final_output / final_output.norm(dim=-1, keepdim=True)
43
  final_output = final_output.cpu().detach().numpy()
44
  sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True)
45
+ print("sequence_output: ", sequence_output)
46
  ```
47
 
48
 
49
+ ## Model Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ ### Intended Use
52
 
53
+ This model is intended to use for video retrival, look for example **this space**.
54
 
55
+ ### Extra Information
56
 
57
+ For video embedding there is an extra notebook that describes how to embedd videos.
58
 
 
59
 
 
60
 
61
+ ## Performance and Limitations
62
 
63
+ ### Performance
64
 
65
+ We have evaluated the performance
66
 
 
67
 
 
68
 
69
+ ## Limitations
70
 
 
71
 
72
+ ## Feedback
73
 
74
+ ### Where to send questions or comments about the model
75
 
76
+ Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)