File size: 2,491 Bytes
9681be0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: dima806/music_genres_classification
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: music_genres_classification-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# music_genres_classification-finetuned-gtzan
This model is a fine-tuned version of [dima806/music_genres_classification](https://huggingface.co/dima806/music_genres_classification) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5964
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.8263 | 1.0 | 180 | 1.8672 | 0.53 |
| 1.5124 | 2.0 | 360 | 1.7102 | 0.45 |
| 1.0715 | 3.0 | 540 | 1.1957 | 0.69 |
| 1.0454 | 4.0 | 720 | 1.5712 | 0.68 |
| 0.3365 | 5.0 | 900 | 0.9891 | 0.81 |
| 0.3502 | 6.0 | 1080 | 1.2261 | 0.74 |
| 1.2326 | 7.0 | 1260 | 1.1571 | 0.77 |
| 0.5868 | 8.0 | 1440 | 0.7691 | 0.87 |
| 0.2718 | 9.0 | 1620 | 0.6720 | 0.88 |
| 0.1625 | 10.0 | 1800 | 0.3927 | 0.93 |
| 0.2519 | 11.0 | 1980 | 0.5140 | 0.91 |
| 0.0701 | 12.0 | 2160 | 0.5964 | 0.88 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1
- Datasets 2.17.1
- Tokenizers 0.15.2
|