File size: 3,552 Bytes
c59bb13
 
 
 
 
 
 
 
 
 
 
 
f2e6e76
fb452b1
c59bb13
 
 
b7ba185
c59bb13
b7ba185
c59bb13
 
 
b7ba185
 
c59bb13
 
 
3fe1847
 
 
 
 
 
 
 
 
b7ba185
c59bb13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ba185
c59bb13
 
 
 
 
 
 
b7ba185
c59bb13
 
 
 
 
 
 
b7ba185
c59bb13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ba185
c59bb13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
library_name: transformers
base_model:
- meta-llama/Llama-3.3-70B-Instruct
tags:
- generated_from_trainer
model-index:
- name: 70B-L3.3-mhnnn-x1
  results: []
license: llama3.3
---

![yeah](https://huggingface.co/Sao10K/70B-L3.3-mhnnn-x1/resolve/main/Huh.jpg)
*my mental when things do not go well*

# 70B-L3.3-mhnnn-x1

I quite liked it, after messing around. Same data composition as Freya, applied differently.

Has occasional brainfarts which are fixed with a regen, the price for more creative outputs.

Recommended Model Settings | *Look, I just use these, they work fine enough. I don't even know how DRY or other meme samplers work. Your system prompt matters more anyway.*
```
Prompt Format: Llama-3-Instruct
Temperature: 1.1
min_p: 0.05
```

Types of Data included within Sets 
```
Completion - Novels / eBooks
Text Adventure - Include details like 'Text Adventure Narrator' in the System Prompt, give it a one-shot example and it'll fly.
Amoral Assistant - Include the terms 'Amoral', 'Neutral' along with the regular assistant prompt for better results.
Instruct / Assistant - The usual assistant tasks.
Roleplay - As per Usual, Regular Sets 
```

Training time in total was ~14 Hours on a 8xH100 Node, shout out to SCDF for not sponsoring this run. My funds are dry doing random things.

https://sao10k.carrd.co/ for contact.

---

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
adapter: lora # 16-bit
lora_r: 64
lora_alpha: 64
lora_dropout: 0.2
peft_use_rslora: true
lora_target_linear: true
  
# Data
dataset_prepared_path: dataset_run_freya
datasets:
# S1 - Writing / Completion
  - path: datasets/eBooks-cleaned-75K
    type: completion
  - path: datasets/novels-clean-dedupe-10K
    type: completion
# S2 - Instruct
  - path: datasets/10k-amoral-full-fixed-sys.json
    type: chat_template
    chat_template: llama3
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: datasets/44k-hespera-smartshuffle.json
    type: chat_template
    chat_template: llama3
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: datasets/5k_rpg_adventure_instruct-sys.json
    type: chat_template
    chat_template: llama3
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
shuffle_merged_datasets: true
warmup_ratio: 0.1

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

# Iterations
num_epochs: 1

# Sampling
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false

# Batching
gradient_accumulation_steps: 4
micro_batch_size: 2
gradient_checkpointing: unsloth

# Evaluation
val_set_size: 0.025
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
eval_batch_size: 1

# Optimizer
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 0.00000242
weight_decay: 0.2
max_grad_norm: 10.0

# Garbage Collection
gc_steps: 10

# Misc
deepspeed: ./deepspeed_configs/zero3_bf16.json
```

</details><br>