SandLogicTechnologies commited on
Commit
45ce389
1 Parent(s): 4bef927

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - hi
5
+ tags:
6
+ - Llama3
7
+ - Pytorch
8
+ - Bilingual
9
+ pipeline_tag: text-generation
10
+ ---
11
+ # SandLogic Technologies - Quantized LLama3-Gaja-Hindi-8B Models
12
+
13
+ ## Model Description
14
+
15
+ We have quantized the LLama3-Gaja-Hindi-8B model into two variants:
16
+
17
+ 1. Q5_KM
18
+ 2. Q4_KM
19
+
20
+ These quantized models offer improved efficiency while maintaining performance.
21
+
22
+ Discover our full range of quantized language models by visiting our [SandLogic Lexicon](https://github.com/sandlogic/SandLogic-Lexicon) GitHub. To learn more about our company and services, check out our website at [SandLogic](https://www.sandlogic.com).
23
+
24
+ ## Original Model Information
25
+
26
+ - **Name**: [LLama3-Gaja-Hindi-8B-v0.1](https://huggingface.co/Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1)
27
+ - **Developer**: Cognitivelab.in
28
+ - **Base Model**: Llama3-8B
29
+ - **Model Type**: Bilingual English/Hindi language model
30
+ - **Parameters**: 8 billion
31
+ - **Specialization**: Natural language understanding, particularly for instructional pairs
32
+
33
+ ## Model Capabilities
34
+
35
+ LLama3-Gaja-Hindi-8B is designed for bilingual (English/Hindi) natural language understanding tasks, with a focus on:
36
+
37
+ - Responding appropriately in either English or Hindi based on user prompts
38
+ - Understanding and generating instructional content in both languages
39
+ - Handling a variety of natural language processing tasks across both languages
40
+
41
+ ## Training Approach
42
+
43
+ The model underwent supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. The training data consisted of a curated dataset of translated instructional pairs.
44
+
45
+ ## Use Cases
46
+
47
+ 1. **Bilingual Conversational AI**: Chatbots and virtual assistants with English/Hindi capabilities
48
+ 2. **Language Learning Tools**: Interactive platforms for English and Hindi learners
49
+ 3. **Content Translation**: Assistance in translating between English and Hindi, especially for instructional materials
50
+ 4. **Cross-lingual Information Retrieval**: Enabling queries in one language with responses in either English or Hindi
51
+ 5. **Cultural Context Understanding**: Helping users grasp cultural nuances in both languages
52
+ 6. **Multilingual Customer Support**: Powering customer service applications for diverse user bases
53
+
54
+ ## Model Variants
55
+
56
+ We offer two quantized versions of the LLama3-Gaja-Hindi-8B model:
57
+
58
+ 1. **Q5_KM**: 5-bit quantization using the KM method
59
+ 2. **Q4_KM**: 4-bit quantization using the KM method
60
+
61
+ These quantized models aim to reduce model size and improve inference speed while maintaining performance as close to the original model as possible.
62
+
63
+ ## Input and Output
64
+
65
+ - **Input**: Text prompts or instructions in either English or Hindi
66
+ - **Output**: Generated text responses in the same language as the input, or as specified in the prompt
67
+
68
+ ## Usage
69
+
70
+ ```bash
71
+ pip install llama-cpp-python
72
+ ```
73
+ Please refer to the llama-cpp-python [documentation](https://llama-cpp-python.readthedocs.io/en/latest/) to install with GPU support.
74
+
75
+ ### Basic Text Completion
76
+ Here's an example demonstrating how to use the high-level API for basic text completion:
77
+
78
+ ```bash
79
+ from llama_cpp import Llama
80
+
81
+ llm = Llama(
82
+ model_path="./models/7B/LLama3-Gaja-Hindi-8B-v0.1.gguf",
83
+ verbose=False,
84
+ # n_gpu_layers=-1, # Uncomment to use GPU acceleration
85
+ # n_ctx=2048, # Uncomment to increase the context window
86
+ )
87
+
88
+ output = llm.create_chat_completion(
89
+ messages =[
90
+ {
91
+ "role": "system",
92
+ "content": """ You are an AI assistant trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."""
93
+
94
+ ,
95
+ },
96
+ {"role": "user", "content": "Write an poem in hindi"},
97
+ ]
98
+ )
99
+
100
+ print(output["choices"][0]['message']['content'])
101
+ ```
102
+
103
+ ## Download
104
+ You can download `Llama` models in `gguf` format directly from Hugging Face using the `from_pretrained` method. This feature requires the `huggingface-hub` package.
105
+
106
+ To install it, run: `pip install huggingface-hub`
107
+
108
+ ```bash
109
+ from llama_cpp import Llama
110
+
111
+ llm = Llama.from_pretrained(
112
+ repo_id="SandLogicTechnologies/LLama3-Gaja-Hindi-8B-GGUF",
113
+ filename="*llama3-gaja-hindi-8b-v0.1.Q5_K_M.gguf",
114
+ verbose=False
115
+ )
116
+ ```
117
+ By default, from_pretrained will download the model to the Hugging Face cache directory. You can manage installed model files using the huggingface-cli tool.
118
+
119
+
120
+ ## Ethical Considerations
121
+
122
+ Users should be aware of potential biases in the model's outputs, especially when dealing with cultural or linguistic nuances. Always review and validate the model's responses for sensitive applications.
123
+
124
+
125
+
126
+ ## Acknowledgements
127
+
128
+ We thank Cognitivelab.in for developing the original LLama3-Gaja-Hindi-8B model and the creators of Llama3 for their foundational work.Special thanks to Georgi Gerganov and the entire llama.cpp development team for their outstanding contributions.
129
+
130
+ ## Contact
131
+
132
+ For any inquiries or support, please contact us at [email protected] or visit our [support page](https://www.sandlogic.com/LingoForge/support).