a2c-PandaReachDense-v3 / config.json
SamuelReyes's picture
Initial commit
9d7910d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7aa668309900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aa6682f61c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691863948773642522, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw4d4P8rEor/wAaE/TKDEvSmT5L780iW+S+xzPlX7mjuCQ+A+S+xzPlX7mjuCQ+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6SIPP/Fnhb/4DD4/IGGwv6/UwL9oPPu+d7SQvkrzkj+Sesy9Ni2bvkISmz69ka6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADDh3g/ysSiv/ABoT/D2oI/WY54vxvrtj9MoMS9KZPkvvzSJb7RFt6/DJTcv2qMrr9L7HM+VfuaO4JD4D41geA+9fMWO1GuvD5L7HM+VfuaO4JD4D41geA+9fMWO1GuvD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.97082156 -1.2716305 1.2578716 ]\n [-0.09600887 -0.44643524 -0.16193765]\n [ 0.23820607 0.00472967 0.43801504]\n [ 0.23820607 0.00472967 0.43801504]]", "desired_goal": "[[ 0.55912644 -1.0422345 0.7423854 ]\n [-1.377964 -1.5064906 -0.49069524]\n [-0.28262684 1.1480496 -0.09984316]\n [-0.3030793 0.30287367 -1.3638226 ]]", "observation": "[[ 0.97082156 -1.2716305 1.2578716 1.0223011 -0.97092205 1.4290498 ]\n [-0.09600887 -0.44643524 -0.16193765 -1.7350713 -1.723268 -1.3636601 ]\n [ 0.23820607 0.00472967 0.43801504 0.43848577 0.00230336 0.36851743]\n [ 0.23820607 0.00472967 0.43801504 0.43848577 0.00230336 0.36851743]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3zJjvLcFvz1uVXk9hc+FvTiwxz0WvPs9amqLvVHP87zbGVs8y78EvllhGD1WiSE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01386711 0.09327262 0.06087249]\n [-0.06533722 0.09750408 0.12291734]\n [-0.06807406 -0.02976194 0.01337286]\n [-0.12963788 0.03720221 0.15775046]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9FW5paiblSMAWyUSwOMAXSUR0Cn8aeUILPVdX2UKGgGR7/JfMOf/WDpaAdLA2gIR0Cn8FWkBS1mdX2UKGgGR7/fe1rqMWGiaAdLBWgIR0Cn8TcoH9m6dX2UKGgGR7/VnLq2SdOJaAdLBGgIR0Cn8NC+cpb2dX2UKGgGR7+m/UONHYpVaAdLAWgIR0Cn8FuT7l7udX2UKGgGR7/SCXyAhB7eaAdLA2gIR0Cn8bewC8vmdX2UKGgGR7/NUWl/H5rQaAdLA2gIR0Cn8N7Ysd1ddX2UKGgGR7/LwdbPhQ3xaAdLA2gIR0Cn8Gm/vfCRdX2UKGgGR7/TI6bONYKZaAdLBGgIR0Cn8U1B+nZTdX2UKGgGR7/AvduYQarFaAdLAmgIR0Cn8HV0tAcDdX2UKGgGR7/U9B8hLXcyaAdLBGgIR0Cn8c0lRgqmdX2UKGgGR7/D5prULDyfaAdLA2gIR0Cn8PAqEvkBdX2UKGgGR7+oBT4tYjjaaAdLAWgIR0Cn8dKTr3TNdX2UKGgGR7/Y4R28qWkaaAdLBGgIR0Cn8WCrksBidX2UKGgGR7/KUj9n9NvgaAdLA2gIR0Cn8ISy2QXAdX2UKGgGR7/QegL7XQMQaAdLA2gIR0Cn8QFAVwgldX2UKGgGR7/K+ZgG8mKJaAdLA2gIR0Cn8eUR3/xUdX2UKGgGR7/RlnRLK3d9aAdLA2gIR0Cn8XTho/RmdX2UKGgGR7/Yk2P1ct5EaAdLBGgIR0Cn8J2nTAnEdX2UKGgGR7/TAJb+tKZlaAdLBGgIR0Cn8RhsqJ/HdX2UKGgGR7/TTH80k4WDaAdLBGgIR0Cn8f0z9CNTdX2UKGgGR7/Io2n889wFaAdLA2gIR0Cn8Ye5e7cxdX2UKGgGR7+fnnuAqd6LaAdLAWgIR0Cn8SELhJiBdX2UKGgGR7+ovtdAxBVuaAdLAWgIR0Cn8gOFg2IgdX2UKGgGR7/R8M/hVENOaAdLA2gIR0Cn8LEtEofCdX2UKGgGR7/ADJU5uIhyaAdLAmgIR0Cn8SuZTho/dX2UKGgGR7+lFWn0kGA1aAdLAWgIR0Cn8LaIvalDdX2UKGgGR7/COzY287IUaAdLA2gIR0Cn8ZfShJyydX2UKGgGR7/K3vx6OYICaAdLBGgIR0Cn8hyB06o3dX2UKGgGR7/OqrilzltCaAdLA2gIR0Cn8UF10T11dX2UKGgGR7/SMIu5BkZraAdLA2gIR0Cn8a59uxbCdX2UKGgGR7/VGi5/b0voaAdLBGgIR0Cn8NKhlDnedX2UKGgGR7/FPcBU70WeaAdLAmgIR0Cn8bhWYF7ldX2UKGgGR7/KfJV81Gb1aAdLA2gIR0Cn8VHjyWiUdX2UKGgGR7+Z/XoTwlSkaAdLAWgIR0Cn8VaufVZtdX2UKGgGR7/Pkmx+rlvIaAdLA2gIR0Cn8OGcOLBLdX2UKGgGR7/UxYJVsDW9aAdLBWgIR0Cn8jtxVAAydX2UKGgGR7+ZWRzRx95RaAdLAWgIR0Cn8OkPDpC8dX2UKGgGR7/QM10knkT6aAdLA2gIR0Cn8cqnWJ7+dX2UKGgGR7+g2fkFOfukaAdLAWgIR0Cn8O7GvOhTdX2UKGgGR7+VOfukUKzBaAdLAWgIR0Cn8c+g+QlsdX2UKGgGR7/R/pdKNAC5aAdLA2gIR0Cn8WkupS75dX2UKGgGR7/c1zhgmZ3LaAdLBGgIR0Cn8k/keZG8dX2UKGgGR7/NiMo+fRNRaAdLA2gIR0Cn8P2DQJHBdX2UKGgGR7/IYoAn2IweaAdLA2gIR0Cn8XntF8XvdX2UKGgGR7/BYao/A0sOaAdLAmgIR0Cn8lvbwjMWdX2UKGgGR7+5Tzd1uBMBaAdLAmgIR0Cn8YMspXp4dX2UKGgGR7/MFLWZqmCRaAdLA2gIR0Cn8Q7ojfNzdX2UKGgGR7/eb3oLXtjTaAdLBmgIR0Cn8fJbUwztdX2UKGgGR7/KKkVN5+pgaAdLA2gIR0Cn8m2Jzkp7dX2UKGgGR7/P+nZTQ3PzaAdLA2gIR0Cn8SEbYK6XdX2UKGgGR7/RDcuanaWYaAdLA2gIR0Cn8gHzQNTcdX2UKGgGR7/Zrp7kXDWLaAdLBGgIR0Cn8Zs0pEx7dX2UKGgGR7+dz8xbjcVQaAdLAWgIR0Cn8SX6InBtdX2UKGgGR7/chM8HObAlaAdLBGgIR0Cn8oGYSg5BdX2UKGgGR7/ECg9Net0WaAdLAmgIR0Cn8gtFa0QcdX2UKGgGR7+7u5SWJJoTaAdLAmgIR0Cn8aSMDOkddX2UKGgGR7/T6k690zTGaAdLBGgIR0Cn8TngYP5IdX2UKGgGR7/RGViWmgrZaAdLA2gIR0Cn8hrylN1ydX2UKGgGR7/Xpe/pMYdiaAdLBGgIR0Cn8pamfoRqdX2UKGgGR7/RHiWE9MbnaAdLBGgIR0Cn8bodMj/udX2UKGgGR7/JZ/Tb349HaAdLA2gIR0Cn8Ula8pTddX2UKGgGR7+wKBun/DLsaAdLAmgIR0Cn8qC/XXiBdX2UKGgGR7/NXKbKA8SxaAdLA2gIR0Cn8iq0MPSVdX2UKGgGR7/SHHmzSkTIaAdLA2gIR0Cn8cop6QeWdX2UKGgGR7/AT7l7tzCDaAdLAmgIR0Cn8VUCzTnadX2UKGgGR7920Z3s5XEJaAdLAWgIR0Cn8VmRFI/adX2UKGgGR7/D3lCCz1K5aAdLA2gIR0Cn8rEGRmsedX2UKGgGR7/YfAKv3ai9aAdLBGgIR0Cn8j79Q40edX2UKGgGR7/O14xDb8FZaAdLA2gIR0Cn8dg7o0Q9dX2UKGgGR7/JDhtLteD4aAdLA2gIR0Cn8sEuYhMbdX2UKGgGR7/SUeMhouf3aAdLBGgIR0Cn8W6qsEJTdX2UKGgGR7/J9uP3i704aAdLA2gIR0Cn8k9/z8P4dX2UKGgGR7/Gfp2U0Nz9aAdLA2gIR0Cn8ekHUtqYdX2UKGgGR7+nK4hEBsAOaAdLAWgIR0Cn8XPBacI7dX2UKGgGR7/Ak56t1ZDBaAdLAmgIR0Cn8ss5GSZCdX2UKGgGR7+dXPqs2eg+aAdLAWgIR0Cn8s/BWPtEdX2UKGgGR7+/KhcqvvBraAdLAmgIR0Cn8llbu+h5dX2UKGgGR7+pciW3Sa3JaAdLAWgIR0Cn8l3yAhB7dX2UKGgGR7/QaURnOB1+aAdLA2gIR0Cn8YI+GGmDdX2UKGgGR7+6kk8ifQKKaAdLAmgIR0Cn8tvr4WUKdX2UKGgGR7+47nxJ/XoUaAdLAmgIR0Cn8moZZSvUdX2UKGgGR7+kovzvqkdnaAdLAWgIR0Cn8m7iQ1aXdX2UKGgGR7/fZvUBnzxxaAdLBmgIR0Cn8ggwoLG8dX2UKGgGR7/K8DB/I8yOaAdLA2gIR0Cn8ZM54nnddX2UKGgGR7/HtHhCMPz4aAdLA2gIR0Cn8urAgxJvdX2UKGgGR7/JJ2+wkgOjaAdLA2gIR0Cn8voJiRW+dX2UKGgGR7/aGKhtcfNiaAdLBGgIR0Cn8oPeYUnHdX2UKGgGR7/a0YCQtBfKaAdLBGgIR0Cn8h1He7+UdX2UKGgGR7/b2zv7WNFSaAdLBWgIR0Cn8awswtaqdX2UKGgGR7/VR0lqrR0EaAdLA2gIR0Cn8wfGMn7YdX2UKGgGR7/PtAs052haaAdLA2gIR0Cn8pF/QSi/dX2UKGgGR7/Jj+aScLBsaAdLA2gIR0Cn8ird30PIdX2UKGgGR7+huwX668QJaAdLAWgIR0Cn8ph4+r2hdX2UKGgGR7/AL1mJ3xFzaAdLAmgIR0Cn8jYVh1DCdX2UKGgGR7/aDRMN+b3HaAdLBGgIR0Cn8cD4pMHsdX2UKGgGR7/QTwlSjxkNaAdLA2gIR0Cn8xh9b5dodX2UKGgGR7/IimEXcgyNaAdLA2gIR0Cn8qZYYBNmdX2UKGgGR7/JVAAyVObiaAdLA2gIR0Cn8kQ53kgfdX2UKGgGR7/Nq1PWQOnVaAdLA2gIR0Cn8c8eS0SidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}