File size: 3,438 Bytes
73a15cf 28789da 73a15cf 155501a 73a15cf 28789da 73a15cf 5633451 73a15cf 5633451 73a15cf 5633451 155501a 5633451 155501a 48a19ac 73a15cf 5633451 73a15cf 5633451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: Samuael/asr-alffamharic-phoneme-based
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: asr-alffamharic-phoneme-based
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# asr-alffamharic-phoneme-based
This model is a fine-tuned version of [Samuael/asr-alffamharic-phoneme-based](https://huggingface.co/Samuael/asr-alffamharic-phoneme-based) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4498
- Wer: 0.1084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2273 | 0.59 | 200 | 1.0408 | 0.3569 |
| 0.7702 | 1.18 | 400 | 0.8009 | 0.2169 |
| 0.6769 | 1.76 | 600 | 0.6978 | 0.1869 |
| 0.5454 | 2.35 | 800 | 0.6163 | 0.1696 |
| 0.5779 | 2.94 | 1000 | 0.5616 | 0.1554 |
| 0.4996 | 3.53 | 1200 | 0.5413 | 0.1437 |
| 0.5648 | 4.12 | 1400 | 0.5111 | 0.1439 |
| 0.4741 | 4.71 | 1600 | 0.5178 | 0.1371 |
| 0.499 | 5.29 | 1800 | 0.4943 | 0.1324 |
| 0.4247 | 5.88 | 2000 | 0.4884 | 0.1279 |
| 0.4008 | 6.47 | 2200 | 0.4667 | 0.1254 |
| 0.2744 | 7.06 | 2400 | 0.4626 | 0.1288 |
| 0.3495 | 7.65 | 2600 | 0.4794 | 0.1229 |
| 0.4016 | 8.24 | 2800 | 0.4548 | 0.1228 |
| 0.3833 | 8.82 | 3000 | 0.4660 | 0.1209 |
| 0.3684 | 9.41 | 3200 | 0.4463 | 0.1235 |
| 0.4149 | 10.0 | 3400 | 0.4697 | 0.1171 |
| 0.3917 | 10.59 | 3600 | 0.4570 | 0.1188 |
| 0.2957 | 11.18 | 3800 | 0.4431 | 0.1171 |
| 0.3054 | 11.76 | 4000 | 0.4530 | 0.1163 |
| 0.2755 | 12.35 | 4200 | 0.4690 | 0.1138 |
| 0.3091 | 12.94 | 4400 | 0.4551 | 0.1157 |
| 0.2617 | 13.53 | 4600 | 0.4557 | 0.1147 |
| 0.2725 | 14.12 | 4800 | 0.4670 | 0.1088 |
| 0.2795 | 14.71 | 5000 | 0.4486 | 0.1118 |
| 0.3493 | 15.29 | 5200 | 0.4471 | 0.1109 |
| 0.2949 | 15.88 | 5400 | 0.4469 | 0.1090 |
| 0.2802 | 16.47 | 5600 | 0.4516 | 0.1100 |
| 0.2655 | 17.06 | 5800 | 0.4418 | 0.1105 |
| 0.3211 | 17.65 | 6000 | 0.4351 | 0.1095 |
| 0.2245 | 18.24 | 6200 | 0.4436 | 0.1093 |
| 0.2244 | 18.82 | 6400 | 0.4493 | 0.1091 |
| 0.2549 | 19.41 | 6600 | 0.4502 | 0.1082 |
| 0.3528 | 20.0 | 6800 | 0.4498 | 0.1084 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|