File size: 9,249 Bytes
7a3362f
bc705e7
7a3362f
 
 
 
 
 
 
bef178b
7a3362f
bef178b
 
7a3362f
bef178b
 
 
7a3362f
78f61d3
bef178b
 
 
 
 
 
78f61d3
 
bef178b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3362f
 
 
 
bef178b
 
 
 
6c8221b
 
bef178b
 
b604fc1
 
 
 
bef178b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8221b
 
 
bef178b
 
6c8221b
 
bef178b
 
 
 
 
 
 
 
6c8221b
 
bef178b
 
 
466289f
bef178b
 
6c8221b
bef178b
 
 
 
 
 
 
 
 
 
 
7a3362f
 
 
 
48ec795
bef178b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3362f
 
 
bef178b
7a3362f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
---


# Model description
We are excited to announce the continuation and rebranding of our **BLIP series** into **XGen-MM**, to be better aligned with Salesforce's unified XGen initiative for large foundation models! This rebranding marks a significant step in our ongoing development of cutting-edge multimodal technologies.

`XGen-MM` is a series of the latest foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. \
These models have been trained at scale on high-quality image caption datasets and interleaved image-text data. XGen-MM highlights a few features below,

* The **pretrained** foundation model, `xgen-mm-phi3-mini-base-r-v1`, achieves state-of-the-art performance under 5b parameters and demonstrates strong in-context learning capabilities.
* The **instruct** fine-tuned model, `xgen-mm-phi3-mini-instruct-r-v1`, achieves state-of-the-art performance among open-source and closed-source VLMs under 5b parameters. 
* `xgen-mm-phi3-mini-instruct-r-v1` supports flexible high-resolution image encoding with efficient visual token sampling.  

The model is for research purposes, more technical details will come with a technical report soon.


# Datasets

| Dataset Type| Dataset(s) Used                          |
|--------|------------------------------------------|
| Pretrain | caption data: high-quality image caption datasets and interleaved datasets |
| Instruction Tuning    | visual instruction following and caption datasets, a mixture of academic VQA data including OCR/Document/Chart-focused tasks, publicly available text-only instruction data |

# Results

### Pretrain (base model without instruction tuning)
| Model       | Shot | COCO (val) | NoCaps (val) | TextCaps (val) | OKVQA  (val) | TextVQA (val) | VizWiz (testdev) | VQAv2 (testdev) |
|-------------|------|------------|--------------|----------------|--------------|---------------|------------------|-----------------|
| Flamingo-3B |    4 |       85.0 | -            | -              |         43.3 |          32.7 |               34 |            53.2 |
|             |    8 |       90.6 | -            | -              |         44.6 |          32.4 |             38.4 |            55.4 |
| MM1-3B      |    0 |       73.5 |         55.6 |           63.3 |         26.1 |          29.4 |             15.6 |            46.2 |
|             |    4 |      112.3 |         99.7 |           84.1 |         48.6 |          45.3 |             38.0 |            57.9 |
|             |    8 |      114.6 |        104.7 |           88.8 |         48.4 |          44.6 |             46.4 |            63.6 |
| **xgen-mm-phi3-mini-base-r-v1 (Ours)**|    0 |       **81.7** |         **80.2** |           60.7 |         **26.5** |          **36.0** |             **21.2** |            **48.1** |
|             |    4 |      110.5 |        **101.7** |           **84.6** |         **49.2** |          **46.1** |             **38.4** |            **63.9** |
|             |    8 |      112.1 |        104.4 |           87.7 |         **49.1** |          **46.4** |             44.3 |            **63.8** |

### Instruct (after instruction tuning)
| Model                      | SEED-IMG | MMBench(dev) | MME-total | MME-P    | MME-C   | MMStar   | MMMU (val) | MMVet    | MathVista (mini) | ScienceQA (test) | POPE      | AI2D     |   |
|----------------------------|----------|--------------|-----------|----------|---------|----------|------------|----------|------------------|------------------|----------|----------|---|
| MM1-3B-Chat                | 68.8     | 67.8         | 1761      | **1482**     | 279     | -        | 33.9       | 43.7     | -                | -                | **87.4**            | -        |   |
| openbmb/MiniCPM-V-2        | 67.1     | 69.6         | 1808      | -        | -       | -        | 38.2       | -        | 38.7             | -                | -         | -        |   |
| VILA1.5-3B                 | 67.9     | 63.4         | -         | 1442     | -       | -        | 33.3       | 35.4     | -                | 69.0             | 85.9       | -        |   |
| xtuner/llava-phi-3-mini-hf | 70.0     | 69.2         | 1790      | 1477     | 313     | 43.7     | **41.4**       | -        | -                | 73.7             | 87.3       | 69.3     |   |
| **xgen-mm-phi3-mini-instruct-r-v1 (Ours)** | **72.1**     | **74.1**         | **1827**      | 1467     | **360**     | **44.6**     | 39.8       | **45.1**     | **39.3**             | **74.2**             | 87.2       | **75.8**     |   |


# How to use

> We require the use of the development version (`"4.41.0.dev0"`) of the `transformers` library. To get it, as of 05/07/2024, one can use `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers.`

```python
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor
import requests
from PIL import Image
import IPython.display as display
import torch
model_name_or_path = "Salesforce/xgen-mm-phi3-mini-base-r-v1"
model = AutoModelForVision2Seq.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, use_fast=True, legacy=False)
image_processor = AutoImageProcessor.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = model.update_special_tokens(tokenizer)

model = model.to('cuda')
tokenizer.padding_side = "left"

def apply_prompt_template(prompt, num_images=1, num_tokens_per_vis = 128, in_context=False, output=None):
    """
    num_tokens_per_vis: model.vlm.num_tokens_per_vis
    """
    placeholder_image_tokens = "<image placeholder>" * (num_tokens_per_vis - 1)
    if in_context:
        formatted_prompt = f"<image>{placeholder_image_tokens}" + f"{prompt}" + f"{output}" + "<|endofchunk|>"
    else:
        formatted_prompt = f"<image>{placeholder_image_tokens}"*num_images + f"{prompt}"
    return formatted_prompt

############ Zero shot inference ##########
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
instruction = "Describe what is the dog doing in this image in one sentence:"
print("==> Instruction: ", instruction)
print("==> Image: ")
display.display(raw_image.resize((int(raw_image.width*0.3), int(raw_image.height*0.3))))
inputs = image_processor([raw_image], return_tensors="pt")
prompt = apply_prompt_template(instruction)
language_inputs = tokenizer([prompt], return_tensors="pt")
inputs.update(language_inputs)
inputs = {name: tensor.cuda() for name, tensor in inputs.items()}

with torch.cuda.amp.autocast(dtype=torch.bfloat16):
    generated_text = model.generate(**inputs, 
                                    pad_token_id=tokenizer.pad_token_id,
                                    do_sample=False, max_new_tokens=64, top_p=None, num_beams=1,
                                    length_penalty=1.0, repetition_penalty=3.0)
prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True)
print("==> prediciton: ", prediction)
print("-"*120)
# ==> prediciton: The dog is sitting on the beach and waving at his owner.
```

More comprehensive examples can be found in the [notebook](demo.ipynb), where we provide a zero-shot and a few-shot example, respectively.

# Reproducibility: 

Our SFT evaluation is based on the VLMEvalKit, in which we fixed some inconsistencies with the official benchmarks (e.g., LLM judge API). During our development, we noticed that the raw resolution of the input image would noticeably affect the model output in some cases.


# Bias, Risks, Limitations, and Ethical Considerations
The main data sources are from the internet, including webpages, 
image stock sites, and curated datasets released by the research community. We have excluded certain data, such as LAION, due to known CSAM concerns.
The model may be subject to bias from the original data source, as well as bias from LLMs and commercial APIs. 
We strongly recommend users assess safety and fairness before applying to downstream applications. 


# License

Our code and weights are released under the Apache-2.0 license. The copyright of the training data remains with the original data owner. 

# Code acknowledgement

[LAVIS](https://github.com/salesforce/LAVIS) \
[openflamingo](https://github.com/mlfoundations/open_flamingo) \
[VLMEvalKit](https://github.com/open-compass/VLMEvalKit/tree/main)


# Citation
```
@misc{xgen_mm_phi3_mini,
    title={xgen-mm-phi3-mini-base Model Card},
    url={https://huggingface.co/Salesforce/xgen-mm-phi3-mini-base-r-v1},
    author={Salesforce AI Research},
    month={May},
    year={2024}
}
```

# Troubleshoot

1. If you missed any packages, please consider the following

```
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
pip install open_clip_torch==2.24.0
pip install einops
pip install einops-exts
```