xgen-7b-8k-inst / tokenization_xgen.py
tianxie-sf's picture
Update tokenization_xgen.py
f79aeb3
raw
history blame
8.85 kB
# Copyright (c) 2023, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
"""Tokenization classes for xgen."""
from typing import List, Optional
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
try:
import tiktoken
except ModuleNotFoundError as e:
raise ModuleNotFoundError("XGen requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
logger = logging.get_logger(__name__)
MAX_MODEL_INPUT_SIZES = {
"Salesforce/xgen-7b-4k-base": 4096,
"Salesforce/xgen-7b-8k-base": 8192,
"Salesforce/xgen-7b-4k-inst": 4096,
"Salesforce/xgen-7b-8k-inst": 8192
}
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
if not add_special:
return tiktoken.get_encoding(base)
def include_whitespace(n_min=2, n_max=20):
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
return whitespaces
def include_tabs(n_min=2, n_max=20):
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
return tabs
def include_fim_tokens():
fim_tokens = [
"<fim_prefix>",
"<fim_middle>",
"<fim_suffix>",
"<fim_pad>",
"<filename>",
"<gh_stars>",
"<issue_start>",
"<issue_comment>",
"<issue_closed>",
"<jupyter_start>",
"<jupyter_text>",
"<jupyter_code>",
"<jupyter_output>",
"<empty_output>",
"<commit_before>",
"<commit_msg>",
"<commit_after>",
"<reponame>"
]
return fim_tokens
def include_additional_tokens():
tokens = []
tokens += [f"<dummy_{i}>" for i in range(4)]
tokens.append("<sep>") # 50317
tokens.append("<eom>") # 50318
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
return tokens
add_whitespaces = include_whitespace(n_min=2, n_max=32)
add_tabs = include_tabs(n_min=2, n_max=10)
fim_tokens = include_fim_tokens()
additional_tokens = include_additional_tokens()
tokenizer = tiktoken.get_encoding(base)
idx = tokenizer.n_vocab
bpe_ranks = tokenizer._mergeable_ranks
for wsp in add_whitespaces:
bpe_ranks[bytes(wsp, 'ascii')] = idx
idx += 1
for t in add_tabs:
bpe_ranks[bytes(t, 'ascii')] = idx
idx += 1
special_tokens = dict()
for sp in fim_tokens:
special_tokens[sp] = idx
idx += 1
for sp in additional_tokens:
special_tokens[sp] = idx
idx += 1
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
special_tokens[pad_token] = idx
idx += 1
# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
# If you're changing the set of special tokens, make sure to use a different name
# It should be clear from the name what behaviour to expect.
name=base.replace("base", "im"),
pat_str=tokenizer._pat_str,
mergeable_ranks=bpe_ranks,
special_tokens={
**tokenizer._special_tokens,
**special_tokens
}
)
return enc
class XgenTokenizer(PreTrainedTokenizer):
"""
Construct a Xgen tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
pad_token=None,
eos_token="<|endoftext|>",
add_eos_token=False,
add_special_tokens=True,
**kwargs,
):
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
self.add_eos_token = add_eos_token
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
super().__init__(
pad_token=pad_token_added,
eos_token=eos_token_added,
add_eos_token=add_eos_token,
add_special_tokens=add_special_tokens,
**kwargs,
)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.encoder.n_vocab
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.encoder.decode_single_token_bytes(i): i for i in range(self.vocab_size)}
return vocab
def _tokenize(self, text, **kwargs):
"""Returns a tokenized string."""
return self.encoder.encode(text, allowed_special="all")
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if isinstance(token, str):
return self.encoder.encode_single_token(token)
else:
return token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.encoder.decode_single_token_bytes(index).decode("utf-8")
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
if skip_special_tokens:
token_ids = [t for t in token_ids if t not in self.all_special_ids]
return self.encoder.decode(token_ids)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + eos_token_id
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(token_ids_1 + eos_token_id)
return output
# has no vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
return ()