File size: 3,255 Bytes
a50cb1a
5f9eb1b
a50cb1a
b2d761b
 
 
 
 
2aa9556
b2d761b
73c2a36
bcc655b
beac4d1
 
 
bcc655b
b2d761b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e628ed
 
9de792b
 
 
 
 
 
b92fabd
9de792b
 
a94e500
6056572
 
b2d761b
 
 
 
 
 
 
73c2a36
2aa9556
b2d761b
2aa9556
b2d761b
5f9eb1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
{}
---

# XGen-7B-8K-Inst

Official research release for the family of **XGen** models (`7B`) by Salesforce AI Research:

*Title*: [Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length](https://arxiv.org/abs/2309.03450)

*Authors*: [Erik Nijkamp](https://eriknijkamp.com)\*, Tian Xie\*, [Hiroaki Hayashi](https://hiroakih.me/)\*, [Bo Pang](https://scholar.google.com/citations?user=s9fNEVEAAAAJ&hl=en)\*, Congying Xia\*, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, [Chien-Sheng Wu](https://jasonwu0731.github.io/), Silvio Savarese, [Yingbo Zhou](https://scholar.google.com/citations?user=H_6RQ7oAAAAJ&hl=en), [Shafiq Rayhan Joty](https://raihanjoty.github.io/), [Caiming Xiong](http://cmxiong.com/).

(* indicates equal contribution)

Correspondence to: [Shafiq Rayhan Joty](mailto:[email protected]), [Caiming Xiong](mailto:[email protected])

## Models

### Base models
* [XGen-7B-4K-Base](https://huggingface.co/Salesforce/xgen-7b-4k-base): XGen-7B model pre-trained under 4K sequence length.
  * License: Apache-2.0
* [XGen-7B-8K-Base](https://huggingface.co/Salesforce/xgen-7b-8k-base): XGen-7B model pre-trained under 8K sequence length.
  * License: Apache-2.0

### Instruction-finetuned models

Supervised finetuned model on public domain instructional data. Released for ***research purpose*** only.

* [XGen-7B-8K-Inst](https://huggingface.co/Salesforce/xgen-7b-8k-inst)

## How to run

The training data for the models are tokenized with OpenAI Tiktoken library.
To use this model, install the package via `pip`:

```sh
pip install tiktoken
```

The models can be used as auto-regressive samplers as follows:

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-inst", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-inst", torch_dtype=torch.bfloat16)

header = (
    "A chat between a curious human and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n"
)
article = ""  # insert a document here
prompt = f"### Human: Please summarize the following article.\n\n{article}.\n###"

inputs = tokenizer(header + prompt, return_tensors="pt")
sample = model.generate(**inputs, do_sample=True, max_new_tokens=2048, top_k=100, eos_token_id=50256)
output = tokenizer.decode(sample[0])
print(output.strip().replace("Assistant:", ""))
```

## Citation

```bibtex
@misc{XGen,
  title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length},
  author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong},
  howpublished={ArXiv},
  year={2023},
  url={https://arxiv.org/abs/2309.03450}
}
```