File size: 17,087 Bytes
b2c41bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
{
"cells": [
{
"cell_type": "markdown",
"id": "ce4a9ccf-4bd6-43fb-a24d-b6a7da401a96",
"metadata": {},
"source": [
"## Load xLAM model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1351d81-4502-4b65-b88a-464acd0e80f8",
"metadata": {},
"outputs": [],
"source": [
"import torch \n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"torch.random.manual_seed(0) \n",
"\n",
"model_name = \"Salesforce/xLAM-7b-r\"\n",
"model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", torch_dtype=\"auto\", trust_remote_code=True)\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name) "
]
},
{
"cell_type": "markdown",
"id": "2cdd5bae-da43-4713-9956-360f1f3a9721",
"metadata": {},
"source": [
"## Build the prompt"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e138e9f6-0543-427c-bce6-b4f14765a040",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import json\n",
"\n",
"# Please use our provided instruction prompt for best performance\n",
"task_instruction = \"\"\"\n",
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\"\"\".strip()\n",
"\n",
"format_instruction = \"\"\"\n",
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
"tool_calls an empty list \"[]\".\n",
"```\n",
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
"```\n",
"\"\"\".strip()\n",
"\n",
"get_weather_api = {\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather for a location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, New York\"\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" \"description\": \"The unit of temperature to return\"\n",
" }\n",
" },\n",
" \"required\": [\"location\"]\n",
" }\n",
"}\n",
"\n",
"search_api = {\n",
" \"name\": \"search\",\n",
" \"description\": \"Search for information on the internet\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"query\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The search query, e.g. 'latest news on AI'\"\n",
" }\n",
" },\n",
" \"required\": [\"query\"]\n",
" }\n",
"}\n",
"\n",
"openai_format_tools = [get_weather_api, search_api]\n",
"\n",
"# Define the input query and available tools\n",
"query = \"What's the weather like in New York in fahrenheit?\"\n",
"\n",
"# Helper function to convert openai format tools to our more concise xLAM format\n",
"def convert_to_xlam_tool(tools):\n",
" ''''''\n",
" if isinstance(tools, dict):\n",
" return {\n",
" \"name\": tools[\"name\"],\n",
" \"description\": tools[\"description\"],\n",
" \"parameters\": {k: v for k, v in tools[\"parameters\"].get(\"properties\", {}).items()}\n",
" }\n",
" elif isinstance(tools, list):\n",
" return [convert_to_xlam_tool(tool) for tool in tools]\n",
" else:\n",
" return tools\n",
"\n",
"def build_conversation_history_prompt(conversation_history: str):\n",
" parsed_history = []\n",
" for step_data in conversation_history:\n",
" parsed_history.append({\n",
" \"step_id\": step_data[\"step_id\"],\n",
" \"thought\": step_data[\"thought\"],\n",
" \"tool_calls\": step_data[\"tool_calls\"],\n",
" \"next_observation\": step_data[\"next_observation\"],\n",
" \"user_input\": step_data['user_input']\n",
" })\n",
" \n",
" history_string = json.dumps(parsed_history)\n",
" return f\"\\n[BEGIN OF HISTORY STEPS]\\n{history_string}\\n[END OF HISTORY STEPS]\\n\"\n",
" \n",
" \n",
"# Helper function to build the input prompt for our model\n",
"def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):\n",
" prompt = f\"[BEGIN OF TASK INSTRUCTION]\\n{task_instruction}\\n[END OF TASK INSTRUCTION]\\n\\n\"\n",
" prompt += f\"[BEGIN OF AVAILABLE TOOLS]\\n{json.dumps(xlam_format_tools)}\\n[END OF AVAILABLE TOOLS]\\n\\n\"\n",
" prompt += f\"[BEGIN OF FORMAT INSTRUCTION]\\n{format_instruction}\\n[END OF FORMAT INSTRUCTION]\\n\\n\"\n",
" prompt += f\"[BEGIN OF QUERY]\\n{query}\\n[END OF QUERY]\\n\\n\"\n",
" \n",
" if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)\n",
" return prompt\n",
"\n",
"\n",
" \n",
"# Build the input and start the inference\n",
"xlam_format_tools = convert_to_xlam_tool(openai_format_tools)\n",
"\n",
"conversation_history = []\n",
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
"\n",
"messages=[\n",
" { 'role': 'user', 'content': content}\n",
"]\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ff7bccd5-fa04-4fbe-92b3-13f58914da4d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[BEGIN OF TASK INSTRUCTION]\n",
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
"[END OF TASK INSTRUCTION]\n",
"\n",
"[BEGIN OF AVAILABLE TOOLS]\n",
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
"[END OF AVAILABLE TOOLS]\n",
"\n",
"[BEGIN OF FORMAT INSTRUCTION]\n",
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
"tool_calls an empty list \"[]\".\n",
"```\n",
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
"```\n",
"[END OF FORMAT INSTRUCTION]\n",
"\n",
"[BEGIN OF QUERY]\n",
"What's the weather like in New York in fahrenheit?\n",
"[END OF QUERY]\n",
"\n",
"\n"
]
}
],
"source": [
"print(content)"
]
},
{
"cell_type": "markdown",
"id": "a5fb0006-9f5d-4d79-a8cd-819bad627441",
"metadata": {},
"source": [
"## Get the model output (agent_action)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbe56588-c786-4913-9062-373a22a92e08",
"metadata": {},
"outputs": [],
"source": [
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"\n",
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
]
},
{
"cell_type": "markdown",
"id": "b20ed2ae-86f6-489b-ad54-fe7ea911667b",
"metadata": {},
"source": [
"For demo purpose, we use an example agent_action"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ab20c084-44fa-403d-92a5-1b8ced72e9be",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_action = \"\"\"{\"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}]}\n",
"\"\"\".strip()"
]
},
{
"cell_type": "markdown",
"id": "1cd4d8e4-ee6b-499e-b75f-a48df7848a60",
"metadata": {},
"source": [
"### Add follow-up question"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "825649ba-2691-43a2-b3d8-7baf8b66d46e",
"metadata": {},
"outputs": [],
"source": [
"def parse_agent_action(agent_action: str):\n",
" \"\"\"\n",
" Given an agent's action, parse it to add to conversation history\n",
" \"\"\"\n",
" try: parsed_agent_action_json = json.loads(agent_action)\n",
" except: return \"\", []\n",
" \n",
" if \"thought\" not in parsed_agent_action_json.keys(): thought = \"\"\n",
" else: thought = parsed_agent_action_json[\"thought\"]\n",
" \n",
" if \"tool_calls\" not in parsed_agent_action_json.keys(): tool_calls = []\n",
" else: tool_calls = parsed_agent_action_json[\"tool_calls\"]\n",
" \n",
" return thought, tool_calls\n",
"\n",
"def update_conversation_history(conversation_history: list, agent_action: str, environment_response: str, user_input: str):\n",
" \"\"\"\n",
" Update the conversation history list based on the new agent_action, environment_response, and/or user_input\n",
" \"\"\"\n",
" thought, tool_calls = parse_agent_action(agent_action)\n",
" new_step_data = {\n",
" \"step_id\": len(conversation_history) + 1,\n",
" \"thought\": thought,\n",
" \"tool_calls\": tool_calls,\n",
" \"next_observation\": environment_response,\n",
" \"user_input\": user_input,\n",
" }\n",
" \n",
" conversation_history.append(new_step_data)\n",
"\n",
"def get_environment_response(agent_action: str):\n",
" \"\"\"\n",
" Get the environment response for the agent_action\n",
" \"\"\"\n",
" # TODO: add custom implementation here\n",
" error_message, response_message = \"\", \"Sunny, 81 degrees\"\n",
" return {\"error\": error_message, \"response\": response_message}\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "051e6aff-c21b-4dcb-9eb8-c34154d90c39",
"metadata": {},
"source": [
"1. **Get the next state after agent's response:**\n",
" The next 2 lines are examples of getting environment response and user_input.\n",
" It is depended on particular usage, we can have either one or both of those."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "649a8e9d-9757-408c-9214-0590556c2db4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"environment_response = get_environment_response(agent_action)\n",
"user_input = \"Now, search on the Internet for cute puppies\""
]
},
{
"cell_type": "markdown",
"id": "9c9c9418-1c54-4381-81d1-7f3834037739",
"metadata": {},
"source": [
"2. After we got environment_response and (or) user_input, we want to add to our conversation history"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "bcfe89f3-8237-41bf-b92c-7c7568366042",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[{'step_id': 1,\n",
" 'thought': '',\n",
" 'tool_calls': [{'name': 'get_weather',\n",
" 'arguments': {'location': 'New York'}}],\n",
" 'next_observation': {'error': '', 'response': 'Sunny, 81 degrees'},\n",
" 'user_input': 'Now, search on the Internet for cute puppies'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_conversation_history(conversation_history, agent_action, environment_response, user_input)\n",
"conversation_history"
]
},
{
"cell_type": "markdown",
"id": "23ba97c6-2356-49e8-a07b-0e664b7f505c",
"metadata": {},
"source": [
"3. We now can build the prompt with the updated history, and prepare the inputs for the LLM"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ed204b3a-3be5-431b-b355-facaf31309d2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
"messages=[\n",
" { 'role': 'user', 'content': content}\n",
"]\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8af843aa-6a47-4938-a455-567ea0cccce3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[BEGIN OF TASK INSTRUCTION]\n",
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
"[END OF TASK INSTRUCTION]\n",
"\n",
"[BEGIN OF AVAILABLE TOOLS]\n",
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
"[END OF AVAILABLE TOOLS]\n",
"\n",
"[BEGIN OF FORMAT INSTRUCTION]\n",
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
"tool_calls an empty list \"[]\".\n",
"```\n",
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
"```\n",
"[END OF FORMAT INSTRUCTION]\n",
"\n",
"[BEGIN OF QUERY]\n",
"What's the weather like in New York in fahrenheit?\n",
"[END OF QUERY]\n",
"\n",
"\n",
"[BEGIN OF HISTORY STEPS]\n",
"[{\"step_id\": 1, \"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}], \"next_observation\": {\"error\": \"\", \"response\": \"Sunny, 81 degrees\"}, \"user_input\": \"Now, search on the Internet for cute puppies\"}]\n",
"[END OF HISTORY STEPS]\n",
"\n"
]
}
],
"source": [
"print(content)"
]
},
{
"cell_type": "markdown",
"id": "71f76a10-a152-49d7-aa6f-3060cc49b935",
"metadata": {},
"source": [
"## Get the model output for follow-up question"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30af06fd-4aa7-4550-af39-3a77b5951882",
"metadata": {},
"outputs": [],
"source": [
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"# 5. Generate the outputs & decode\n",
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel) (Local)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|