update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,62 +48,22 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- training_steps:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log |
|
58 |
-
| No log |
|
59 |
-
| No log |
|
60 |
-
| No log | 0
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
| No log | 1.38 | 110 | 0.0080 | 0.9557 | 0.9418 | 0.9487 | 0.9986 |
|
68 |
-
| No log | 1.5 | 120 | 0.0068 | 0.9650 | 0.9527 | 0.9588 | 0.9989 |
|
69 |
-
| No log | 1.62 | 130 | 0.0055 | 0.9741 | 0.9564 | 0.9651 | 0.9990 |
|
70 |
-
| No log | 1.75 | 140 | 0.0048 | 0.9745 | 0.9709 | 0.9727 | 0.9993 |
|
71 |
-
| No log | 1.88 | 150 | 0.0043 | 0.9781 | 0.9727 | 0.9754 | 0.9993 |
|
72 |
-
| No log | 2.0 | 160 | 0.0037 | 0.9817 | 0.9727 | 0.9772 | 0.9993 |
|
73 |
-
| No log | 2.12 | 170 | 0.0034 | 0.9835 | 0.9782 | 0.9809 | 0.9994 |
|
74 |
-
| No log | 2.25 | 180 | 0.0037 | 0.9762 | 0.9691 | 0.9726 | 0.9993 |
|
75 |
-
| No log | 2.38 | 190 | 0.0030 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
|
76 |
-
| No log | 2.5 | 200 | 0.0030 | 0.9854 | 0.9836 | 0.9845 | 0.9995 |
|
77 |
-
| No log | 2.62 | 210 | 0.0029 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
|
78 |
-
| No log | 2.75 | 220 | 0.0027 | 0.9836 | 0.9818 | 0.9827 | 0.9994 |
|
79 |
-
| No log | 2.88 | 230 | 0.0026 | 0.9854 | 0.9818 | 0.9836 | 0.9994 |
|
80 |
-
| No log | 3.0 | 240 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
|
81 |
-
| No log | 3.12 | 250 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
|
82 |
-
| No log | 3.25 | 260 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
83 |
-
| No log | 3.38 | 270 | 0.0024 | 0.9891 | 0.9891 | 0.9891 | 0.9996 |
|
84 |
-
| No log | 3.5 | 280 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
85 |
-
| No log | 3.62 | 290 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
86 |
-
| No log | 3.75 | 300 | 0.0022 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
87 |
-
| No log | 3.88 | 310 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
88 |
-
| No log | 4.0 | 320 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
89 |
-
| No log | 4.12 | 330 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
90 |
-
| No log | 4.25 | 340 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
91 |
-
| No log | 4.38 | 350 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
92 |
-
| No log | 4.5 | 360 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
93 |
-
| No log | 4.62 | 370 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
94 |
-
| No log | 4.75 | 380 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
95 |
-
| No log | 4.88 | 390 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
96 |
-
| No log | 5.0 | 400 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
97 |
-
| No log | 5.12 | 410 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
98 |
-
| No log | 5.25 | 420 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
99 |
-
| No log | 5.38 | 430 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
100 |
-
| No log | 5.5 | 440 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
101 |
-
| No log | 5.62 | 450 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
102 |
-
| No log | 5.75 | 460 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
103 |
-
| No log | 5.88 | 470 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
104 |
-
| No log | 6.0 | 480 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
105 |
-
| No log | 6.12 | 490 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
106 |
-
| 0.0346 | 6.25 | 500 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
107 |
|
108 |
|
109 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0013
|
23 |
+
- Precision: 0.9937
|
24 |
+
- Recall: 0.9964
|
25 |
+
- F1: 0.9950
|
26 |
+
- Accuracy: 0.9999
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 1000
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.25 | 100 | 0.0082 | 0.9505 | 0.9367 | 0.9435 | 0.9983 |
|
58 |
+
| No log | 2.5 | 200 | 0.0024 | 0.9883 | 0.9901 | 0.9892 | 0.9997 |
|
59 |
+
| No log | 3.75 | 300 | 0.0020 | 0.9883 | 0.9919 | 0.9901 | 0.9997 |
|
60 |
+
| No log | 5.0 | 400 | 0.0016 | 0.9910 | 0.9928 | 0.9919 | 0.9998 |
|
61 |
+
| 0.0301 | 6.25 | 500 | 0.0015 | 0.9910 | 0.9928 | 0.9919 | 0.9998 |
|
62 |
+
| 0.0301 | 7.5 | 600 | 0.0014 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
|
63 |
+
| 0.0301 | 8.75 | 700 | 0.0013 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
|
64 |
+
| 0.0301 | 10.0 | 800 | 0.0013 | 0.9937 | 0.9964 | 0.9950 | 0.9999 |
|
65 |
+
| 0.0301 | 11.25 | 900 | 0.0013 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
|
66 |
+
| 0.002 | 12.5 | 1000 | 0.0013 | 0.9937 | 0.9964 | 0.9950 | 0.9999 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|