update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: layoutlmv3-finetuned-Algo_427Images
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# layoutlmv3-finetuned-Algo_427Images
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0019
|
23 |
+
- Precision: 0.9891
|
24 |
+
- Recall: 0.9909
|
25 |
+
- F1: 0.9900
|
26 |
+
- Accuracy: 0.9997
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 500
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 0.12 | 10 | 0.1986 | 0.0 | 0.0 | 0.0 | 0.9661 |
|
58 |
+
| No log | 0.25 | 20 | 0.1131 | 0.0 | 0.0 | 0.0 | 0.9661 |
|
59 |
+
| No log | 0.38 | 30 | 0.0757 | 0.1848 | 0.1109 | 0.1386 | 0.9722 |
|
60 |
+
| No log | 0.5 | 40 | 0.0600 | 0.4032 | 0.0909 | 0.1484 | 0.9784 |
|
61 |
+
| No log | 0.62 | 50 | 0.0481 | 0.6446 | 0.3891 | 0.4853 | 0.9869 |
|
62 |
+
| No log | 0.75 | 60 | 0.0384 | 0.8022 | 0.6709 | 0.7307 | 0.9924 |
|
63 |
+
| No log | 0.88 | 70 | 0.0276 | 0.8347 | 0.7527 | 0.7916 | 0.9949 |
|
64 |
+
| No log | 1.0 | 80 | 0.0194 | 0.8333 | 0.7545 | 0.7920 | 0.9949 |
|
65 |
+
| No log | 1.12 | 90 | 0.0137 | 0.9118 | 0.8836 | 0.8975 | 0.9973 |
|
66 |
+
| No log | 1.25 | 100 | 0.0105 | 0.95 | 0.9327 | 0.9413 | 0.9983 |
|
67 |
+
| No log | 1.38 | 110 | 0.0080 | 0.9557 | 0.9418 | 0.9487 | 0.9986 |
|
68 |
+
| No log | 1.5 | 120 | 0.0068 | 0.9650 | 0.9527 | 0.9588 | 0.9989 |
|
69 |
+
| No log | 1.62 | 130 | 0.0055 | 0.9741 | 0.9564 | 0.9651 | 0.9990 |
|
70 |
+
| No log | 1.75 | 140 | 0.0048 | 0.9745 | 0.9709 | 0.9727 | 0.9993 |
|
71 |
+
| No log | 1.88 | 150 | 0.0043 | 0.9781 | 0.9727 | 0.9754 | 0.9993 |
|
72 |
+
| No log | 2.0 | 160 | 0.0037 | 0.9817 | 0.9727 | 0.9772 | 0.9993 |
|
73 |
+
| No log | 2.12 | 170 | 0.0034 | 0.9835 | 0.9782 | 0.9809 | 0.9994 |
|
74 |
+
| No log | 2.25 | 180 | 0.0037 | 0.9762 | 0.9691 | 0.9726 | 0.9993 |
|
75 |
+
| No log | 2.38 | 190 | 0.0030 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
|
76 |
+
| No log | 2.5 | 200 | 0.0030 | 0.9854 | 0.9836 | 0.9845 | 0.9995 |
|
77 |
+
| No log | 2.62 | 210 | 0.0029 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
|
78 |
+
| No log | 2.75 | 220 | 0.0027 | 0.9836 | 0.9818 | 0.9827 | 0.9994 |
|
79 |
+
| No log | 2.88 | 230 | 0.0026 | 0.9854 | 0.9818 | 0.9836 | 0.9994 |
|
80 |
+
| No log | 3.0 | 240 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
|
81 |
+
| No log | 3.12 | 250 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
|
82 |
+
| No log | 3.25 | 260 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
83 |
+
| No log | 3.38 | 270 | 0.0024 | 0.9891 | 0.9891 | 0.9891 | 0.9996 |
|
84 |
+
| No log | 3.5 | 280 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
85 |
+
| No log | 3.62 | 290 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
86 |
+
| No log | 3.75 | 300 | 0.0022 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
87 |
+
| No log | 3.88 | 310 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
88 |
+
| No log | 4.0 | 320 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
89 |
+
| No log | 4.12 | 330 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
90 |
+
| No log | 4.25 | 340 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
91 |
+
| No log | 4.38 | 350 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
92 |
+
| No log | 4.5 | 360 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
93 |
+
| No log | 4.62 | 370 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
94 |
+
| No log | 4.75 | 380 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
95 |
+
| No log | 4.88 | 390 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
96 |
+
| No log | 5.0 | 400 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
97 |
+
| No log | 5.12 | 410 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
98 |
+
| No log | 5.25 | 420 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
99 |
+
| No log | 5.38 | 430 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
100 |
+
| No log | 5.5 | 440 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
101 |
+
| No log | 5.62 | 450 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
102 |
+
| No log | 5.75 | 460 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
103 |
+
| No log | 5.88 | 470 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
104 |
+
| No log | 6.0 | 480 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
105 |
+
| No log | 6.12 | 490 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
106 |
+
| 0.0346 | 6.25 | 500 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.30.2
|
112 |
+
- Pytorch 2.0.1+cu118
|
113 |
+
- Datasets 2.13.0
|
114 |
+
- Tokenizers 0.13.3
|