Saed2023 commited on
Commit
47969eb
·
1 Parent(s): 6173eef

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: layoutlmv3-finetuned-Algo_427Images
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # layoutlmv3-finetuned-Algo_427Images
19
+
20
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0019
23
+ - Precision: 0.9891
24
+ - Recall: 0.9909
25
+ - F1: 0.9900
26
+ - Accuracy: 0.9997
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 500
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 0.12 | 10 | 0.1986 | 0.0 | 0.0 | 0.0 | 0.9661 |
58
+ | No log | 0.25 | 20 | 0.1131 | 0.0 | 0.0 | 0.0 | 0.9661 |
59
+ | No log | 0.38 | 30 | 0.0757 | 0.1848 | 0.1109 | 0.1386 | 0.9722 |
60
+ | No log | 0.5 | 40 | 0.0600 | 0.4032 | 0.0909 | 0.1484 | 0.9784 |
61
+ | No log | 0.62 | 50 | 0.0481 | 0.6446 | 0.3891 | 0.4853 | 0.9869 |
62
+ | No log | 0.75 | 60 | 0.0384 | 0.8022 | 0.6709 | 0.7307 | 0.9924 |
63
+ | No log | 0.88 | 70 | 0.0276 | 0.8347 | 0.7527 | 0.7916 | 0.9949 |
64
+ | No log | 1.0 | 80 | 0.0194 | 0.8333 | 0.7545 | 0.7920 | 0.9949 |
65
+ | No log | 1.12 | 90 | 0.0137 | 0.9118 | 0.8836 | 0.8975 | 0.9973 |
66
+ | No log | 1.25 | 100 | 0.0105 | 0.95 | 0.9327 | 0.9413 | 0.9983 |
67
+ | No log | 1.38 | 110 | 0.0080 | 0.9557 | 0.9418 | 0.9487 | 0.9986 |
68
+ | No log | 1.5 | 120 | 0.0068 | 0.9650 | 0.9527 | 0.9588 | 0.9989 |
69
+ | No log | 1.62 | 130 | 0.0055 | 0.9741 | 0.9564 | 0.9651 | 0.9990 |
70
+ | No log | 1.75 | 140 | 0.0048 | 0.9745 | 0.9709 | 0.9727 | 0.9993 |
71
+ | No log | 1.88 | 150 | 0.0043 | 0.9781 | 0.9727 | 0.9754 | 0.9993 |
72
+ | No log | 2.0 | 160 | 0.0037 | 0.9817 | 0.9727 | 0.9772 | 0.9993 |
73
+ | No log | 2.12 | 170 | 0.0034 | 0.9835 | 0.9782 | 0.9809 | 0.9994 |
74
+ | No log | 2.25 | 180 | 0.0037 | 0.9762 | 0.9691 | 0.9726 | 0.9993 |
75
+ | No log | 2.38 | 190 | 0.0030 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
76
+ | No log | 2.5 | 200 | 0.0030 | 0.9854 | 0.9836 | 0.9845 | 0.9995 |
77
+ | No log | 2.62 | 210 | 0.0029 | 0.9855 | 0.9855 | 0.9855 | 0.9996 |
78
+ | No log | 2.75 | 220 | 0.0027 | 0.9836 | 0.9818 | 0.9827 | 0.9994 |
79
+ | No log | 2.88 | 230 | 0.0026 | 0.9854 | 0.9818 | 0.9836 | 0.9994 |
80
+ | No log | 3.0 | 240 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
81
+ | No log | 3.12 | 250 | 0.0025 | 0.9873 | 0.9891 | 0.9882 | 0.9996 |
82
+ | No log | 3.25 | 260 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
83
+ | No log | 3.38 | 270 | 0.0024 | 0.9891 | 0.9891 | 0.9891 | 0.9996 |
84
+ | No log | 3.5 | 280 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
85
+ | No log | 3.62 | 290 | 0.0023 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
86
+ | No log | 3.75 | 300 | 0.0022 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
87
+ | No log | 3.88 | 310 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
88
+ | No log | 4.0 | 320 | 0.0021 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
89
+ | No log | 4.12 | 330 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
90
+ | No log | 4.25 | 340 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
91
+ | No log | 4.38 | 350 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
92
+ | No log | 4.5 | 360 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
93
+ | No log | 4.62 | 370 | 0.0020 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
94
+ | No log | 4.75 | 380 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
95
+ | No log | 4.88 | 390 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
96
+ | No log | 5.0 | 400 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
97
+ | No log | 5.12 | 410 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
98
+ | No log | 5.25 | 420 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
99
+ | No log | 5.38 | 430 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
100
+ | No log | 5.5 | 440 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
101
+ | No log | 5.62 | 450 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
102
+ | No log | 5.75 | 460 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
103
+ | No log | 5.88 | 470 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
104
+ | No log | 6.0 | 480 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
105
+ | No log | 6.12 | 490 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
106
+ | 0.0346 | 6.25 | 500 | 0.0019 | 0.9891 | 0.9909 | 0.9900 | 0.9997 |
107
+
108
+
109
+ ### Framework versions
110
+
111
+ - Transformers 4.30.2
112
+ - Pytorch 2.0.1+cu118
113
+ - Datasets 2.13.0
114
+ - Tokenizers 0.13.3