Update README.md
Browse files
README.md
CHANGED
@@ -8,28 +8,20 @@ pipeline_tag: text-generation
|
|
8 |
|
9 |
# Model Card for Model ID
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
-
### Model Description
|
18 |
-
|
19 |
-
<!-- Provide a longer summary of what this model is. -->
|
20 |
-
|
21 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
22 |
|
23 |
-
- **Developed by
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
- **Language(s) (NLP):** English
|
26 |
-
- **Finetuned from model
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
- **Repository:** Coming soon
|
31 |
-
- **Paper [optional]:** [More Information Needed]
|
32 |
-
- **Demo [optional]:** [More Information Needed]
|
33 |
|
34 |
## Uses
|
35 |
|
@@ -39,17 +31,18 @@ Automatic identification of sections in (clinical trial) abstracts.
|
|
39 |
|
40 |
Prompt Format:
|
41 |
|
42 |
-
'''
|
43 |
-
###Unstruct:
|
44 |
-
{abstract}
|
45 |
-
###Struct:
|
46 |
-
'''
|
47 |
|
48 |
## Training Details
|
49 |
|
50 |
### Training Data
|
51 |
|
52 |
-
50k randomly sampled
|
|
|
53 |
|
54 |
### Training Procedure
|
55 |
|
@@ -61,7 +54,6 @@ Generation of dedicated prompt for Causal_LM modelling.
|
|
61 |
|
62 |
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
63 |
bnb_4bit_quant_type='nf4',
|
64 |
-
#bnb_4bit_compute_dtype='float16',
|
65 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
66 |
bnb_4bit_use_double_quant=True)
|
67 |
|
@@ -77,13 +69,10 @@ bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
|
77 |
|
78 |
#### Metrics
|
79 |
|
80 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Results
|
85 |
|
86 |
-
[More Information Needed]
|
87 |
|
88 |
#### Summary
|
89 |
|
@@ -92,21 +81,21 @@ bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
|
92 |
|
93 |
### Model Architecture and Objective
|
94 |
|
95 |
-
LoraConfig(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
bias="none",
|
107 |
lora_dropout=0.05,
|
108 |
task_type="CAUSAL_LM",
|
109 |
-
)
|
110 |
|
111 |
### Compute Infrastructure
|
112 |
|
|
|
8 |
|
9 |
# Model Card for Model ID
|
10 |
|
11 |
+
Model is a powerful language tool designed for scientific research. It specializes in analyzing clinical trial abstracts and sorts sentences into four key sections: Background, Methods, Results, and Conclusion.
|
12 |
+
This makes it easier and faster for researchers to understand and organize important information from clinical studies.
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
- **Developed by: Salvatore Saporito
|
|
|
19 |
- **Language(s) (NLP):** English
|
20 |
+
- **Finetuned from model:** https://huggingface.co/microsoft/phi-2
|
21 |
|
22 |
### Model Sources [optional]
|
23 |
|
24 |
- **Repository:** Coming soon
|
|
|
|
|
25 |
|
26 |
## Uses
|
27 |
|
|
|
31 |
|
32 |
Prompt Format:
|
33 |
|
34 |
+
'''
|
35 |
+
###Unstruct:
|
36 |
+
{abstract}
|
37 |
+
###Struct:
|
38 |
+
'''
|
39 |
|
40 |
## Training Details
|
41 |
|
42 |
### Training Data
|
43 |
|
44 |
+
50k randomly sampled randomized clinical trial abstracts with date of pubblication within [1970-2023].
|
45 |
+
Abstracts were retrieved from MEDLINE using Biopython.
|
46 |
|
47 |
### Training Procedure
|
48 |
|
|
|
54 |
|
55 |
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
56 |
bnb_4bit_quant_type='nf4',
|
|
|
57 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
58 |
bnb_4bit_use_double_quant=True)
|
59 |
|
|
|
69 |
|
70 |
#### Metrics
|
71 |
|
|
|
72 |
|
|
|
73 |
|
74 |
### Results
|
75 |
|
|
|
76 |
|
77 |
#### Summary
|
78 |
|
|
|
81 |
|
82 |
### Model Architecture and Objective
|
83 |
|
84 |
+
LoraConfig(
|
85 |
+
r=16,
|
86 |
+
lora_alpha=32,
|
87 |
+
target_modules=[
|
88 |
+
'q_proj',
|
89 |
+
'k_proj',
|
90 |
+
'v_proj',
|
91 |
+
'dense',
|
92 |
+
'fc1',
|
93 |
+
'fc2',
|
94 |
+
],
|
95 |
bias="none",
|
96 |
lora_dropout=0.05,
|
97 |
task_type="CAUSAL_LM",
|
98 |
+
)
|
99 |
|
100 |
### Compute Infrastructure
|
101 |
|