SaborDay commited on
Commit
3752382
1 Parent(s): fae573a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -34
README.md CHANGED
@@ -8,28 +8,20 @@ pipeline_tag: text-generation
8
 
9
  # Model Card for Model ID
10
 
11
- <!-- Provide a quick summary of what the model is/does. -->
12
-
13
 
14
 
15
  ## Model Details
16
 
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
 
23
- - **Developed by:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
  - **Language(s) (NLP):** English
26
- - **Finetuned from model [optional]:** https://huggingface.co/microsoft/phi-2
27
 
28
  ### Model Sources [optional]
29
 
30
  - **Repository:** Coming soon
31
- - **Paper [optional]:** [More Information Needed]
32
- - **Demo [optional]:** [More Information Needed]
33
 
34
  ## Uses
35
 
@@ -39,17 +31,18 @@ Automatic identification of sections in (clinical trial) abstracts.
39
 
40
  Prompt Format:
41
 
42
- '''
43
- ###Unstruct:
44
- {abstract}
45
- ###Struct:
46
- '''
47
 
48
  ## Training Details
49
 
50
  ### Training Data
51
 
52
- 50k randomly sampled RCT abstract within period [1970-2023]
 
53
 
54
  ### Training Procedure
55
 
@@ -61,7 +54,6 @@ Generation of dedicated prompt for Causal_LM modelling.
61
 
62
  bnb_config = BitsAndBytesConfig(load_in_4bit=True,
63
  bnb_4bit_quant_type='nf4',
64
- #bnb_4bit_compute_dtype='float16',
65
  bnb_4bit_compute_dtype=torch.bfloat16,
66
  bnb_4bit_use_double_quant=True)
67
 
@@ -77,13 +69,10 @@ bnb_config = BitsAndBytesConfig(load_in_4bit=True,
77
 
78
  #### Metrics
79
 
80
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Results
85
 
86
- [More Information Needed]
87
 
88
  #### Summary
89
 
@@ -92,21 +81,21 @@ bnb_config = BitsAndBytesConfig(load_in_4bit=True,
92
 
93
  ### Model Architecture and Objective
94
 
95
- LoraConfig(
96
- r=16,
97
- lora_alpha=32,
98
- target_modules=[
99
- 'q_proj',
100
- 'k_proj',
101
- 'v_proj',
102
- 'dense',
103
- 'fc1',
104
- 'fc2',
105
- ], #print(model) will show the modules to use
106
  bias="none",
107
  lora_dropout=0.05,
108
  task_type="CAUSAL_LM",
109
- )
110
 
111
  ### Compute Infrastructure
112
 
 
8
 
9
  # Model Card for Model ID
10
 
11
+ Model is a powerful language tool designed for scientific research. It specializes in analyzing clinical trial abstracts and sorts sentences into four key sections: Background, Methods, Results, and Conclusion.
12
+ This makes it easier and faster for researchers to understand and organize important information from clinical studies.
13
 
14
 
15
  ## Model Details
16
 
 
 
 
 
 
17
 
18
+ - **Developed by: Salvatore Saporito
 
19
  - **Language(s) (NLP):** English
20
+ - **Finetuned from model:** https://huggingface.co/microsoft/phi-2
21
 
22
  ### Model Sources [optional]
23
 
24
  - **Repository:** Coming soon
 
 
25
 
26
  ## Uses
27
 
 
31
 
32
  Prompt Format:
33
 
34
+ '''
35
+ ###Unstruct:
36
+ {abstract}
37
+ ###Struct:
38
+ '''
39
 
40
  ## Training Details
41
 
42
  ### Training Data
43
 
44
+ 50k randomly sampled randomized clinical trial abstracts with date of pubblication within [1970-2023].
45
+ Abstracts were retrieved from MEDLINE using Biopython.
46
 
47
  ### Training Procedure
48
 
 
54
 
55
  bnb_config = BitsAndBytesConfig(load_in_4bit=True,
56
  bnb_4bit_quant_type='nf4',
 
57
  bnb_4bit_compute_dtype=torch.bfloat16,
58
  bnb_4bit_use_double_quant=True)
59
 
 
69
 
70
  #### Metrics
71
 
 
72
 
 
73
 
74
  ### Results
75
 
 
76
 
77
  #### Summary
78
 
 
81
 
82
  ### Model Architecture and Objective
83
 
84
+ LoraConfig(
85
+ r=16,
86
+ lora_alpha=32,
87
+ target_modules=[
88
+ 'q_proj',
89
+ 'k_proj',
90
+ 'v_proj',
91
+ 'dense',
92
+ 'fc1',
93
+ 'fc2',
94
+ ],
95
  bias="none",
96
  lora_dropout=0.05,
97
  task_type="CAUSAL_LM",
98
+ )
99
 
100
  ### Compute Infrastructure
101