File size: 25,488 Bytes
b69174d 7bba267 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 60abbe2 b69174d 7bba267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/LICENSE.md
pipeline_tag: object-detection
---
# SSD MobileNet v2 FPN-lite quantized
## **Use case** : `Object detection`
# Model description
The mobilenet-ssd model is a Single-Shot multibox Detection (SSD) network intended to perform object detection.
Mobilenet-ssd is using MobileNetV2 as a backbone which is a general architecture that can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby reduce inference cost on mobile devices.
The model is quantized in int8 using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2 |
| Paper | https://arxiv.org/abs/1801.04381, https://arxiv.org/abs/1512.02325 |
The models are quantized using tensorflow lite converter.
## Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, NA, 8 + NC) | FLOAT values Where NA is thge number of anchors and NC is the number of classes|
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [x] |
| STM32MP1 | [x] | [x] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 606.49 | 0.0 | 1580.53 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1314.67 | 0.0 | 1607.41 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1959.06 | 0.0 | 1637.02 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 4570.03 | 0.0 | 1837.8 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 14.37 | 69.57 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 18.15 | 55.10 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.73 | 46.03 | 10.0.0 | 2.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 114.12 | 8.76 | 10.0.0 | 2.0.0 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | STM32Cube.AI version |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 521.210.0.0 | 70.26 | 1098.76 | 192.69 | 591.46 | 1291.45 | 10.0.0 | |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 956.82 | 70.3 | 1120.63 | 192.84 | 1027.12 | 1313.47 | 10.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 1238.29 | 70.3 | 1145.24 | 192.81 | 1308.59 | 1338.05 | 10.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 2869.05 | 70.3 | 1321.02 | 193.23 | 2939.35 | 1514.25 | 10.0.0 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 511.16 ms | 10.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 673.19 ms | 10.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 898.32 ms | 10.0.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2684.93 ms | 10.0.0 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 35.08 ms | 6.20 | 93.80 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 48.92 ms | 6.19 | 93.81 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 40.66 ms | 7.07 | 92.93 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 110.4 ms | 4.47 | 95.53 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 193.70 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 263.60 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 339.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 894.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 287.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 383.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 498.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1348.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
### Reference **MPU** inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 100.90 ms | 8.86 | 91.14 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 280.00 ms | 8.68 | 91.32 |0 | v5.1.0 | OpenVX |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 742.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 2000 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1112.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2986 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### AP on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP* |
|-------|--------|------------|----------------|
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | 40.7 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192.h5) | Float | 192x192x3 | 40.8 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | 51.1 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224.h5) | Float | 224x224x3 | 51.7 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | 58.3 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256.h5) | Float | 256x256x3 | 58.8 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | 61.9 % |
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416.h5) | Float | 416x416x3 | 62.6 % |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
### AP on COCO 80 classes dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP* |
|-------|--------|------------|----------------|
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | 32.2 % |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256.h5) | Float | 256x256x3 | 32.6 % |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | 32.3 % |
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416.h5) | Float | 416x416x3 | 34.8 % |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014. "Microsoft coco: Common objects in context". In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing. [Online]. Available: https://cocodataset.org/#download. |