File size: 1,410 Bytes
a9f81e5 7ab934c c113a01 7ab934c c113a01 7ab934c c113a01 7ab934c c113a01 7ab934c c113a01 7ab934c c113a01 7ab934c c113a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: afl-3.0
datasets:
- WillHeld/hinglish_top
language:
- en
- hi
metrics:
- accuracy
library_name: transformers
pipeline_tag: fill-mask
---
### SRDberta
This is a BERT model trained for Masked Language Modeling for Hinglish Data.
Hinglish is a term used to describe the hybrid language spoken in India, which combines elements of Hindi and English. It is commonly used in informal conversations and in media such as Bollywood films
### Dataset
Hinglish-Top [Dataset](https://huggingface.co/datasets/WillHeld/hinglish_top) columns
- en_query
- cs_query
- en_parse
- cs_parse
- domain
### Training
|Epochs|Train Loss|
|:------:|:----------:|
|4th | 0.251 |
The model was trained only for 4 epochs due to the GPU limitations. The model will give far better results with 10 epochs
### Inference
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("SRDdev/SRDBerta")
model = AutoModelForMaskedLM.from_pretrained("SRDdev/SRDBerta")
fill = pipeline('fill-mask', model='SRDberta', tokenizer='SRDberta')
```
```python
fill_mask = fill.tokenizer.mask_token
fill(f'Aap {fill_mask} ho?')
```
### Citation
Author: @[SRDdev](https://huggingface.co/SRDdev)
```
Name : Shreyas Dixit
framework : Pytorch
Year: Jan 2023
Pipeline : fill-mask
Github : https://github.com/SRDdev
LinkedIn : https://www.linkedin.com/in/srddev/
```
|