File size: 84,406 Bytes
26f2318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
---
base_model: SQAI/streetlight_sql_embedding
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2161
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: longitude of streetlight
  sentences:
  - '"What is the recent status of the streetlight at the given longitude, considering
    the current overload conditions?"'
  - '"Has there been any recent failure in the metering components of the streetlights
    affecting data reporting, and was the control mode switch identifier used for
    the changes?"'
  - '"Can you tell me when was the most recent instance when the current exceeded
    the safe operating threshold, causing a streetlight failure?"'
- source_sentence: Ambient light level detected by the streetlight, measured in lux
  sentences:
  - '"What is the count of how many times the most recent streetlight failure has
    been switched on before the error occurred?"'
  - '"What is the recent data on maximum load current indicating potential risk and
    any recent communication issues with the lux sensors?"'
  - '"What is the recent dimming schedule applied, the detected ambient light level
    in lux, and were there any recent issues or failures with the driver of the streetlight?"'
- source_sentence: Timestamp of the latest data recorded or action performed by the
    streetlight
  sentences:
  - '"What is the recent failure rate of the relay responsible for operating the DALI
    dimming protocol in our streetlights?"'
  - '"Can you provide the recent instances where the current drawn by the streetlights
    was lower than expected, sorted by the unique streetlight identifier and street
    name?"'
  - '"What was the most recent threshold level set to stop recording flickering events
    using the SIM card code in the streetlight?"'
- source_sentence: Current exceeds the safe operating threshold for the streetlight
    (failure)
  sentences:
  - '"What is the hardware version of the recent streetlight experiencing faults in
    its lux module affecting light level sensing and control?"'
  - '"Can you provide the recent instances where the current drawn by the streetlights
    was lower than expected, sorted by the unique streetlight identifier and street
    name?"'
  - '"Can you identify the most recent instance when the power under load was higher
    than normal, possibly indicating inefficiency or a fault, and concurrently, the
    voltage exceeded the safe operating levels for the streetlights?"'
- source_sentence: Voltage supplied is below the safe operating level for the streetlight
    (failure)
  sentences:
  - '"What is the recent AC voltage supply to the streetlight and the SIM card code
    used for its cellular network communication?"'
  - '"What was the most recent threshold level set to stop recording flickering events
    using the SIM card code in the streetlight?"'
  - '"What is the most recent internal temperature reading for the operating conditions
    of the streetlight?"'
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.004149377593360996
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.02074688796680498
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04149377593360996
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.06224066390041494
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.004149377593360996
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.006915629322268326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.008298755186721992
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.006224066390041493
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.004149377593360996
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02074688796680498
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04149377593360996
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.06224066390041494
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.028846821098581887
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.018665612856484225
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.024320046307682447
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.004149377593360996
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.02074688796680498
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04149377593360996
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.06224066390041494
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.004149377593360996
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.006915629322268326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.008298755186721992
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.006224066390041493
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.004149377593360996
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02074688796680498
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04149377593360996
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.06224066390041494
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.028846821098581887
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.018665612856484225
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.024320046307682447
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.008298755186721992
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.02074688796680498
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04149377593360996
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.058091286307053944
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.008298755186721992
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.006915629322268326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.008298755186721992
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0058091286307053935
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.008298755186721992
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02074688796680498
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04149377593360996
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.058091286307053944
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.02917470145123319
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.020424158598432458
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.02622693528356527
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.008298755186721992
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.02074688796680498
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.03734439834024896
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.05394190871369295
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.008298755186721992
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.006915629322268326
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.007468879668049794
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.005394190871369295
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.008298755186721992
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02074688796680498
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.03734439834024896
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.05394190871369295
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.027438863848135625
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.019311071593229267
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.02603525046406888
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.008298755186721992
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.012448132780082987
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.029045643153526972
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.05394190871369295
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.008298755186721992
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.004149377593360996
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.005809128630705394
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.005394190871369295
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.008298755186721992
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.012448132780082987
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.029045643153526972
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.05394190871369295
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.025512460997908278
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.017038793387341104
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.02259750227693111
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [SQAI/streetlight_sql_embedding](https://huggingface.co/SQAI/streetlight_sql_embedding). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [SQAI/streetlight_sql_embedding](https://huggingface.co/SQAI/streetlight_sql_embedding) <!-- at revision de1e1a4c2afb3f9040c5f19953077d9fca76ae90 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SQAI/streetlight_sql_embedding2")
# Run inference
sentences = [
    'Voltage supplied is below the safe operating level for the streetlight (failure)',
    '"What is the recent AC voltage supply to the streetlight and the SIM card code used for its cellular network communication?"',
    '"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0041     |
| cosine_accuracy@3   | 0.0207     |
| cosine_accuracy@5   | 0.0415     |
| cosine_accuracy@10  | 0.0622     |
| cosine_precision@1  | 0.0041     |
| cosine_precision@3  | 0.0069     |
| cosine_precision@5  | 0.0083     |
| cosine_precision@10 | 0.0062     |
| cosine_recall@1     | 0.0041     |
| cosine_recall@3     | 0.0207     |
| cosine_recall@5     | 0.0415     |
| cosine_recall@10    | 0.0622     |
| cosine_ndcg@10      | 0.0288     |
| cosine_mrr@10       | 0.0187     |
| **cosine_map@100**  | **0.0243** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0041     |
| cosine_accuracy@3   | 0.0207     |
| cosine_accuracy@5   | 0.0415     |
| cosine_accuracy@10  | 0.0622     |
| cosine_precision@1  | 0.0041     |
| cosine_precision@3  | 0.0069     |
| cosine_precision@5  | 0.0083     |
| cosine_precision@10 | 0.0062     |
| cosine_recall@1     | 0.0041     |
| cosine_recall@3     | 0.0207     |
| cosine_recall@5     | 0.0415     |
| cosine_recall@10    | 0.0622     |
| cosine_ndcg@10      | 0.0288     |
| cosine_mrr@10       | 0.0187     |
| **cosine_map@100**  | **0.0243** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0083     |
| cosine_accuracy@3   | 0.0207     |
| cosine_accuracy@5   | 0.0415     |
| cosine_accuracy@10  | 0.0581     |
| cosine_precision@1  | 0.0083     |
| cosine_precision@3  | 0.0069     |
| cosine_precision@5  | 0.0083     |
| cosine_precision@10 | 0.0058     |
| cosine_recall@1     | 0.0083     |
| cosine_recall@3     | 0.0207     |
| cosine_recall@5     | 0.0415     |
| cosine_recall@10    | 0.0581     |
| cosine_ndcg@10      | 0.0292     |
| cosine_mrr@10       | 0.0204     |
| **cosine_map@100**  | **0.0262** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.0083    |
| cosine_accuracy@3   | 0.0207    |
| cosine_accuracy@5   | 0.0373    |
| cosine_accuracy@10  | 0.0539    |
| cosine_precision@1  | 0.0083    |
| cosine_precision@3  | 0.0069    |
| cosine_precision@5  | 0.0075    |
| cosine_precision@10 | 0.0054    |
| cosine_recall@1     | 0.0083    |
| cosine_recall@3     | 0.0207    |
| cosine_recall@5     | 0.0373    |
| cosine_recall@10    | 0.0539    |
| cosine_ndcg@10      | 0.0274    |
| cosine_mrr@10       | 0.0193    |
| **cosine_map@100**  | **0.026** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0083     |
| cosine_accuracy@3   | 0.0124     |
| cosine_accuracy@5   | 0.029      |
| cosine_accuracy@10  | 0.0539     |
| cosine_precision@1  | 0.0083     |
| cosine_precision@3  | 0.0041     |
| cosine_precision@5  | 0.0058     |
| cosine_precision@10 | 0.0054     |
| cosine_recall@1     | 0.0083     |
| cosine_recall@3     | 0.0124     |
| cosine_recall@5     | 0.029      |
| cosine_recall@10    | 0.0539     |
| cosine_ndcg@10      | 0.0255     |
| cosine_mrr@10       | 0.017      |
| **cosine_map@100**  | **0.0226** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,161 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                         | anchor                                                                             |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 14.3 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 32.58 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | positive                                                                                 | anchor                                                                                                                                                                                                                             |
  |:-----------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Lower lux level below which additional lighting may be necessary</code>            | <code>"What are the recent faults found in the lux module that affect light level control, in relation to the default dimming level of the streetlights and the control mode switch identifier used for changing settings?"</code> |
  | <code>Current dimming level of the streetlight in operation</code>                       | <code>"Can the operator managing the streetlights provide the most recent update on the streetlight that is currently below the expected range and unable to connect to the network for remote management?"</code>                 |
  | <code>Upper voltage limit considered safe and efficient for streetlight operation</code> | <code>"Can you provide any recent potential failures of a streetlight group due to unusually high voltage under load or intermittent flashing, within the southernmost geographic area?"</code>                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 241 evaluation samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 14.31 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 31.03 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | positive                                                                                   | anchor                                                                                                                                      |
  |:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Timestamp of the latest data recorded or action performed by the streetlight</code>  | <code>"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?"</code> |
  | <code>Maximum longitude of the geographic area covered by the group of streetlights</code> | <code>"What is the recent power usage in watts for the oldest streetlight on the street with maximum longitude?"</code>                     |
  | <code>Current dimming level of the streetlight in operation</code>                         | <code>"What is the most recent dimming level of the streetlight?"</code>                                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 1e-05
- `weight_decay`: 0.03
- `num_train_epochs`: 75
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.03
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 75
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch       | Step    | Training Loss | loss       | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-----------:|:-------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.2353      | 1       | 11.247        | -          | -                      | -                      | -                      | -                     | -                      |
| 0.4706      | 2       | 11.4455       | -          | -                      | -                      | -                      | -                     | -                      |
| 0.7059      | 3       | 11.5154       | -          | -                      | -                      | -                      | -                     | -                      |
| 0.9412      | 4       | 10.4079       | -          | -                      | -                      | -                      | -                     | -                      |
| 1.1765      | 5       | 3.3256        | -          | -                      | -                      | -                      | -                     | -                      |
| 1.4118      | 6       | 3.812         | -          | -                      | -                      | -                      | -                     | -                      |
| 1.6471      | 7       | 4.0302        | -          | -                      | -                      | -                      | -                     | -                      |
| 1.8824      | 8       | 3.5832        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.1176      | 9       | 3.9586        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.3529      | 10      | 4.2835        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.5882      | 11      | 1.6391        | 6.0237     | 0.0254                 | 0.0354                 | 0.0318                 | 0.0230                | 0.0318                 |
| 1.0294      | 12      | 1.3873        | -          | -                      | -                      | -                      | -                     | -                      |
| 1.2647      | 13      | 11.1729       | -          | -                      | -                      | -                      | -                     | -                      |
| 1.5         | 14      | 11.1729       | -          | -                      | -                      | -                      | -                     | -                      |
| 1.7353      | 15      | 11.3334       | -          | -                      | -                      | -                      | -                     | -                      |
| 1.9706      | 16      | 9.1337        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.2059      | 17      | 2.8674        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.4412      | 18      | 3.9162        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.6765      | 19      | 3.3378        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.9118      | 20      | 3.5152        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.1471      | 21      | 3.1655        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.3824      | 22      | 3.5905        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.6176      | 23      | 1.2027        | 5.5383     | 0.0265                 | 0.0304                 | 0.0291                 | 0.0235                | 0.0291                 |
| 2.0588      | 24      | 2.5902        | -          | -                      | -                      | -                      | -                     | -                      |
| 2.2941      | 25      | 10.8776       | -          | -                      | -                      | -                      | -                     | -                      |
| 2.5294      | 26      | 10.7109       | -          | -                      | -                      | -                      | -                     | -                      |
| 2.7647      | 27      | 10.9662       | -          | -                      | -                      | -                      | -                     | -                      |
| 3.0         | 28      | 7.5032        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.2353      | 29      | 1.9266        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.4706      | 30      | 2.5007        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.7059      | 31      | 2.2972        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.9412      | 32      | 2.3428        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.1765      | 33      | 2.4842        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.4118      | 34      | 2.371         | -          | -                      | -                      | -                      | -                     | -                      |
| 4.6471      | 35      | 0.8811        | 5.0896     | 0.0261                 | 0.0356                 | 0.0324                 | 0.0263                | 0.0324                 |
| 3.0882      | 36      | 3.8163        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.3235      | 37      | 10.3601       | -          | -                      | -                      | -                      | -                     | -                      |
| 3.5588      | 38      | 9.8085        | -          | -                      | -                      | -                      | -                     | -                      |
| 3.7941      | 39      | 10.3201       | -          | -                      | -                      | -                      | -                     | -                      |
| 4.0294      | 40      | 5.7213        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.2647      | 41      | 1.0641        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.5         | 42      | 1.7557        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.7353      | 43      | 1.534         | -          | -                      | -                      | -                      | -                     | -                      |
| 4.9706      | 44      | 1.2931        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.2059      | 45      | 2.0569        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.4412      | 46      | 1.6945        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.6765      | 47      | 0.6985        | 4.8110     | 0.0267                 | 0.0230                 | 0.0343                 | 0.0180                | 0.0343                 |
| 4.1176      | 48      | 4.8862        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.3529      | 49      | 9.9427        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.5882      | 50      | 9.7492        | -          | -                      | -                      | -                      | -                     | -                      |
| 4.8235      | 51      | 10.1616       | -          | -                      | -                      | -                      | -                     | -                      |
| 5.0588      | 52      | 4.3073        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.2941      | 53      | 0.9089        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.5294      | 54      | 1.2689        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.7647      | 55      | 1.2875        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.0         | 56      | 1.2756        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.2353      | 57      | 1.6222        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.4706      | 58      | 1.3049        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.7059      | 59      | 0.3305        | 4.6562     | 0.0184                 | 0.0327                 | 0.0288                 | 0.0190                | 0.0288                 |
| 5.1471      | 60      | 5.7286        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.3824      | 61      | 9.7399        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.6176      | 62      | 9.3036        | -          | -                      | -                      | -                      | -                     | -                      |
| 5.8529      | 63      | 9.6674        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.0882      | 64      | 2.7979        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.3235      | 65      | 0.4978        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.5588      | 66      | 1.8006        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.7941      | 67      | 1.098         | -          | -                      | -                      | -                      | -                     | -                      |
| 7.0294      | 68      | 1.3678        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.2647      | 69      | 1.4648        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.5         | 70      | 1.1826        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.7353      | 71      | 0.0624        | 4.5802     | 0.0200                 | 0.0208                 | 0.0216                 | 0.0231                | 0.0216                 |
| 6.1765      | 72      | 6.8322        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.4118      | 73      | 9.3021        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.6471      | 74      | 9.1494        | -          | -                      | -                      | -                      | -                     | -                      |
| 6.8824      | 75      | 9.631         | -          | -                      | -                      | -                      | -                     | -                      |
| 7.1176      | 76      | 1.661         | -          | -                      | -                      | -                      | -                     | -                      |
| 7.3529      | 77      | 0.2353        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.5882      | 78      | 1.0663        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.8235      | 79      | 0.6836        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.0588      | 80      | 0.9921        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.2941      | 81      | 1.6479        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.5294      | 82      | 0.6713        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.7647      | 83      | 0.0           | 4.5499     | 0.0209                 | 0.0233                 | 0.0249                 | 0.0226                | 0.0249                 |
| 7.2059      | 84      | 7.775         | -          | -                      | -                      | -                      | -                     | -                      |
| 7.4412      | 85      | 9.0508        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.6765      | 86      | 9.1417        | -          | -                      | -                      | -                      | -                     | -                      |
| 7.9118      | 87      | 8.9087        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.1471      | 88      | 0.9757        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.3824      | 89      | 0.7521        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.6176      | 90      | 0.7292        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.8529      | 91      | 0.6088        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.0882      | 92      | 0.9514        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.3235      | 93      | 1.435         | -          | -                      | -                      | -                      | -                     | -                      |
| 9.5588      | 94      | 0.3655        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.7941      | 95      | 0.0           | 4.5162     | 0.0245                 | 0.0268                 | 0.0224                 | 0.0238                | 0.0224                 |
| 8.2353      | 96      | 8.7854        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.4706      | 97      | 9.0167        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.7059      | 98      | 9.0405        | -          | -                      | -                      | -                      | -                     | -                      |
| 8.9412      | 99      | 7.7069        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.1765      | 100     | 0.6267        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.4118      | 101     | 0.4043        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.6471      | 102     | 0.7028        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.8824      | 103     | 0.751         | -          | -                      | -                      | -                      | -                     | -                      |
| 10.1176     | 104     | 0.5994        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.3529     | 105     | 1.0402        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.5882     | 106     | 0.3983        | 4.4860     | 0.0259                 | 0.0301                 | 0.0252                 | 0.0265                | 0.0252                 |
| 9.0294      | 107     | 1.1037        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.2647      | 108     | 8.6263        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.5         | 109     | 8.9359        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.7353      | 110     | 8.9879        | -          | -                      | -                      | -                      | -                     | -                      |
| 9.9706      | 111     | 6.4932        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.2059     | 112     | 0.3904        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.4412     | 113     | 0.3544        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.6765     | 114     | 0.5658        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.9118     | 115     | 0.5884        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.1471     | 116     | 0.4828        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.3824     | 117     | 0.8872        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.6176     | 118     | 0.2906        | 4.4899     | 0.0237                 | 0.0267                 | 0.0264                 | 0.0242                | 0.0264                 |
| 10.0588     | 119     | 2.1398        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.2941     | 120     | 8.6036        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.5294     | 121     | 8.7739        | -          | -                      | -                      | -                      | -                     | -                      |
| 10.7647     | 122     | 9.1481        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.0        | 123     | 5.2436        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.2353     | 124     | 0.2435        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.4706     | 125     | 0.4451        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.7059     | 126     | 0.4338        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.9412     | 127     | 0.5156        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.1765     | 128     | 0.7081        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.4118     | 129     | 0.375         | -          | -                      | -                      | -                      | -                     | -                      |
| **12.6471** | **130** | **0.1906**    | **4.5243** | **0.0305**             | **0.0253**             | **0.0217**             | **0.0214**            | **0.0217**             |
| 11.0882     | 131     | 3.115         | -          | -                      | -                      | -                      | -                     | -                      |
| 11.3235     | 132     | 8.702         | -          | -                      | -                      | -                      | -                     | -                      |
| 11.5588     | 133     | 8.4872        | -          | -                      | -                      | -                      | -                     | -                      |
| 11.7941     | 134     | 9.0143        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.0294     | 135     | 4.2374        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.2647     | 136     | 0.1979        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.5        | 137     | 0.6371        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.7353     | 138     | 0.5763        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.9706     | 139     | 0.5716        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.2059     | 140     | 0.9894        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.4412     | 141     | 0.3963        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.6765     | 142     | 0.084         | 4.5514     | 0.0224                 | 0.0253                 | 0.0209                 | 0.0250                | 0.0209                 |
| 12.1176     | 143     | 4.1455        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.3529     | 144     | 8.6664        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.5882     | 145     | 8.5896        | -          | -                      | -                      | -                      | -                     | -                      |
| 12.8235     | 146     | 8.9639        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.0588     | 147     | 3.2692        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.2941     | 148     | 0.2518        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.5294     | 149     | 0.8313        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.7647     | 150     | 0.5592        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.0        | 151     | 0.3966        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.2353     | 152     | 0.829         | -          | -                      | -                      | -                      | -                     | -                      |
| 14.4706     | 153     | 0.2369        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.7059     | 154     | 0.0629        | 4.5549     | 0.0294                 | 0.0312                 | 0.0258                 | 0.0315                | 0.0258                 |
| 13.1471     | 155     | 5.1674        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.3824     | 156     | 8.5543        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.6176     | 157     | 8.4481        | -          | -                      | -                      | -                      | -                     | -                      |
| 13.8529     | 158     | 8.7815        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.0882     | 159     | 1.9305        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.3235     | 160     | 0.0925        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.5588     | 161     | 0.6568        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.7941     | 162     | 0.2796        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.0294     | 163     | 0.5503        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.2647     | 164     | 0.6386        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.5        | 165     | 0.1957        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.7353     | 166     | 0.0137        | 4.5688     | 0.0210                 | 0.0251                 | 0.0251                 | 0.0223                | 0.0251                 |
| 14.1765     | 167     | 6.2283        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.4118     | 168     | 8.5378        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.6471     | 169     | 8.5173        | -          | -                      | -                      | -                      | -                     | -                      |
| 14.8824     | 170     | 8.9953        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.1176     | 171     | 0.983         | -          | -                      | -                      | -                      | -                     | -                      |
| 15.3529     | 172     | 0.1503        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.5882     | 173     | 0.9004        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.8235     | 174     | 0.3962        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.0588     | 175     | 0.4047        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.2941     | 176     | 0.8265        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.5294     | 177     | 0.3069        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.7647     | 178     | 0.0           | 4.5819     | 0.0219                 | 0.0271                 | 0.0240                 | 0.0253                | 0.0240                 |
| 15.2059     | 179     | 7.3186        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.4412     | 180     | 8.5984        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.6765     | 181     | 8.5362        | -          | -                      | -                      | -                      | -                     | -                      |
| 15.9118     | 182     | 8.2934        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.1471     | 183     | 0.437         | -          | -                      | -                      | -                      | -                     | -                      |
| 16.3824     | 184     | 0.1864        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.6176     | 185     | 0.2657        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.8529     | 186     | 0.4242        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.0882     | 187     | 0.4815        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.3235     | 188     | 0.5206        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.5588     | 189     | 0.1981        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.7941     | 190     | 0.0           | 4.5795     | 0.0249                 | 0.0319                 | 0.0287                 | 0.0227                | 0.0287                 |
| 16.2353     | 191     | 8.2837        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.4706     | 192     | 8.5457        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.7059     | 193     | 8.6284        | -          | -                      | -                      | -                      | -                     | -                      |
| 16.9412     | 194     | 7.1806        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.1765     | 195     | 0.2714        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.4118     | 196     | 0.65          | -          | -                      | -                      | -                      | -                     | -                      |
| 17.6471     | 197     | 0.3627        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.8824     | 198     | 0.2502        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.1176     | 199     | 0.4651        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.3529     | 200     | 0.3878        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.5882     | 201     | 0.1728        | 4.5870     | 0.0258                 | 0.0321                 | 0.0293                 | 0.0290                | 0.0293                 |
| 17.0294     | 202     | 1.0158        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.2647     | 203     | 8.1391        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.5        | 204     | 8.5323        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.7353     | 205     | 8.6644        | -          | -                      | -                      | -                      | -                     | -                      |
| 17.9706     | 206     | 6.1161        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.2059     | 207     | 0.4636        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.4412     | 208     | 0.8765        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.6765     | 209     | 0.4075        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.9118     | 210     | 0.3211        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.1471     | 211     | 0.65          | -          | -                      | -                      | -                      | -                     | -                      |
| 19.3824     | 212     | 0.4802        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.6176     | 213     | 0.0777        | 4.5921     | 0.0211                 | 0.0268                 | 0.0238                 | 0.0260                | 0.0238                 |
| 18.0588     | 214     | 1.9364        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.2941     | 215     | 8.3079        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.5294     | 216     | 8.4468        | -          | -                      | -                      | -                      | -                     | -                      |
| 18.7647     | 217     | 8.8501        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.0        | 218     | 5.0076        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.2353     | 219     | 0.1596        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.4706     | 220     | 0.6482        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.7059     | 221     | 0.5019        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.9412     | 222     | 0.2596        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.1765     | 223     | 0.5857        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.4118     | 224     | 0.3469        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.6471     | 225     | 0.082         | 4.5951     | 0.0251                 | 0.0293                 | 0.0239                 | 0.0259                | 0.0239                 |
| 19.0882     | 226     | 3.0141        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.3235     | 227     | 8.3977        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.5588     | 228     | 8.2687        | -          | -                      | -                      | -                      | -                     | -                      |
| 19.7941     | 229     | 8.8415        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.0294     | 230     | 3.9692        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.2647     | 231     | 0.2079        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.5        | 232     | 0.6167        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.7353     | 233     | 0.255         | -          | -                      | -                      | -                      | -                     | -                      |
| 20.9706     | 234     | 0.2403        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.2059     | 235     | 0.5944        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.4412     | 236     | 0.4212        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.6765     | 237     | 0.1031        | 4.5929     | 0.0248                 | 0.0301                 | 0.0297                 | 0.0268                | 0.0297                 |
| 20.1176     | 238     | 4.0698        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.3529     | 239     | 8.3696        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.5882     | 240     | 8.2668        | -          | -                      | -                      | -                      | -                     | -                      |
| 20.8235     | 241     | 8.8194        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.0588     | 242     | 2.9283        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.2941     | 243     | 0.0974        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.5294     | 244     | 0.5172        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.7647     | 245     | 0.2451        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.0        | 246     | 0.4693        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.2353     | 247     | 0.7352        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.4706     | 248     | 0.1933        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.7059     | 249     | 0.0552        | 4.5945     | 0.0261                 | 0.0275                 | 0.0279                 | 0.0204                | 0.0279                 |
| 21.1471     | 250     | 5.1237        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.3824     | 251     | 8.5068        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.6176     | 252     | 8.2828        | -          | -                      | -                      | -                      | -                     | -                      |
| 21.8529     | 253     | 8.7851        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.0882     | 254     | 2.0883        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.3235     | 255     | 0.1147        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.5588     | 256     | 0.5259        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.7941     | 257     | 0.2915        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.0294     | 258     | 0.2495        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.2647     | 259     | 0.7518        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.5        | 260     | 0.1767        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.7353     | 261     | 0.0244        | 4.5944     | 0.0213                 | 0.0267                 | 0.0265                 | 0.0220                | 0.0265                 |
| 22.1765     | 262     | 6.1144        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.4118     | 263     | 8.3334        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.6471     | 264     | 8.4377        | -          | -                      | -                      | -                      | -                     | -                      |
| 22.8824     | 265     | 8.8182        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.1176     | 266     | 0.8795        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.3529     | 267     | 0.0637        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.5882     | 268     | 0.3658        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.8235     | 269     | 0.3599        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.0588     | 270     | 0.283         | -          | -                      | -                      | -                      | -                     | -                      |
| 24.2941     | 271     | 0.731         | -          | -                      | -                      | -                      | -                     | -                      |
| 24.5294     | 272     | 0.1758        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.7647     | 273     | 0.0           | 4.5963     | 0.0259                 | 0.0295                 | 0.0247                 | 0.0229                | 0.0247                 |
| 23.2059     | 274     | 7.1188        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.4412     | 275     | 8.354         | -          | -                      | -                      | -                      | -                     | -                      |
| 23.6765     | 276     | 8.5186        | -          | -                      | -                      | -                      | -                     | -                      |
| 23.9118     | 277     | 8.1633        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.1471     | 278     | 0.3481        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.3824     | 279     | 0.574         | -          | -                      | -                      | -                      | -                     | -                      |
| 24.6176     | 280     | 0.2784        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.8529     | 281     | 0.251         | -          | -                      | -                      | -                      | -                     | -                      |
| 25.0882     | 282     | 0.4093        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.3235     | 283     | 0.5414        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.5588     | 284     | 0.149         | -          | -                      | -                      | -                      | -                     | -                      |
| 25.7941     | 285     | 0.0           | 4.5965     | 0.0223                 | 0.0251                 | 0.0240                 | 0.0204                | 0.0240                 |
| 24.2353     | 286     | 8.2498        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.4706     | 287     | 8.4555        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.7059     | 288     | 8.5368        | -          | -                      | -                      | -                      | -                     | -                      |
| 24.9412     | 289     | 7.1779        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.1765     | 290     | 0.1486        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.4118     | 291     | 0.9156        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.6471     | 292     | 0.2757        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.8824     | 293     | 0.237         | -          | -                      | -                      | -                      | -                     | -                      |
| 26.1176     | 294     | 0.2979        | -          | -                      | -                      | -                      | -                     | -                      |
| 26.3529     | 295     | 0.5296        | -          | -                      | -                      | -                      | -                     | -                      |
| 26.5882     | 296     | 0.2062        | 4.5949     | 0.0259                 | 0.0327                 | 0.0308                 | 0.0247                | 0.0308                 |
| 25.0294     | 297     | 1.0355        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.2647     | 298     | 8.1721        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.5        | 299     | 8.4028        | -          | -                      | -                      | -                      | -                     | -                      |
| 25.7353     | 300     | 8.5989        | 4.5941     | 0.0260                 | 0.0262                 | 0.0243                 | 0.0226                | 0.0243                 |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->