a2c-AntBulletEnv-v0 / config.json
S1X3L4's picture
Initial commit
7c475d6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7db7832c4040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7db7832c40d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7db7832c4160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7db7832c41f0>", "_build": "<function ActorCriticPolicy._build at 0x7db7832c4280>", "forward": "<function ActorCriticPolicy.forward at 0x7db7832c4310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7db7832c43a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7db7832c4430>", "_predict": "<function ActorCriticPolicy._predict at 0x7db7832c44c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7db7832c4550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7db7832c45e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7db7832c4670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7db7832c8380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690213845952929595, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF+maL3e6iA/+oRHPySZFD9eJeu+5FBePlK/6D3sT0K/Jakrv4GYZz4OAfM+MqgaPu0PBb7VuRq/ypApP02KjT/M8he+6K0sv5svLj+voY4+9179Prvrt72aKOW94nMFv1ZI1j4Svac+RnLzPuPjnb9wmne/EzKbv6IAhr8trSW/4VbkPl4vED7yOg0/PTELPqM687/IS9Q7cfjHvruUCbzHSCc/iQ9Vvns+Mj7kkks+U1avP03Gwb1RpGY/onwFvh2xqT8/JpC7zidJv3W1rz1WSNY+Er2nPkZy8z5iiU8/9tBVv3Y5db/hBRrAy+UYvyWAZz+t5N48i4vAPbrzdb4z+w3AfsBHvuXDGb7yhdc8S90+v6uDB74Gnjk/iLQWPcm2Uj/R5wq+neIePwW86j3lnDg/RmvUPRejhL55HfI+VkjWPhK9pz5GcvM+4+Odv35onb6o95W/WY1av+pwBb4WZkW/WdZHvw0yjD7D/zq/9sN3v9KRtb6HROQ+EK9WPCqYrb5BNKe+oz8rP1WYlD2/HDO/9XgIv3nCfT/CkNk9DYSFPtz27b39W1K+9kIzP1ZI1j4Svac+RnLzPuPjnb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACyLGU0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMGCLPQAAAAB9Yea/AAAAAM3l0D0AAAAACVnjPwAAAABHUPo8AAAAAMca7T8AAAAA/i9xPQAAAADmCOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwr3ftQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGttWL0AAAAAzbT6vwAAAADhjbG8AAAAAIDp/j8AAAAAZNQ+PAAAAABl5fQ/AAAAAKlB5z0AAAAA7Fr0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANaMrzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXn488AAAAALt+278AAAAAR6TvvQAAAAD6+Nk/AAAAABHOAT4AAAAAhhHgPwAAAAAVIqW8AAAAACzx7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3B3G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAB96fPAAAAADNNeK/AAAAAHKJ8jsAAAAA9o/nPwAAAABxDQ29AAAAAOMQ9T8AAAAAhwTTPQAAAACoeNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJph19jPOY+MAWyUTegDjAF0lEdAqrpmDxsl9nV9lChoBkdAmHG/x+az/2gHTegDaAhHQKq6fo8IRiB1fZQoaAZHQJsToP+XJHRoB03oA2gIR0CqvzS9M9KVdX2UKGgGR0CafPJe3QUpaAdN6ANoCEdAqsAxnzxwynV9lChoBkdAld9TjrAxjGgHTegDaAhHQKrIKmKIi1R1fZQoaAZHQJlO2pm29ctoB03oA2gIR0CqyEORkmQbdX2UKGgGR0CXqvJVsDW9aAdN6ANoCEdAqs0LwOOKfnV9lChoBkdAmEs7GrCFbmgHTegDaAhHQKrOB4Uvf0p1fZQoaAZHQJZTwR15jYtoB03oA2gIR0Cq1Bc4gieNdX2UKGgGR0CVmcXtShrWaAdN6ANoCEdAqtQveHi3onV9lChoBkdAmMZxsZYPoWgHTegDaAhHQKrY9RE4Nqh1fZQoaAZHQI6JtCCz1K5oB03oA2gIR0Cq2fiiyprDdX2UKGgGR0Caq8qQzUI+aAdN6ANoCEdAquG4FC9h7XV9lChoBkdAmdewOOKfnWgHTegDaAhHQKrh0OvMbFV1fZQoaAZHQJn4EQ9RrJtoB03oA2gIR0Cq5qoicG1QdX2UKGgGR0CY4aGjbi6yaAdN6ANoCEdAque30/W1+nV9lChoBkdAlci3zxwyZmgHTegDaAhHQKrt6HkcS5B1fZQoaAZHQI0PuevpyIZoB03oA2gIR0Cq7gGYKIBSdX2UKGgGR0CKRuY3Ns3yaAdN6ANoCEdAqvLVRk3CK3V9lChoBkdAkupdh3JPqWgHTegDaAhHQKrz2+iaiK11fZQoaAZHQI6iWmLtNSJoB03oA2gIR0Cq+7QqI7/5dX2UKGgGR0COxshg3LmqaAdN6ANoCEdAqvvNYKYzBXV9lChoBkdAjXarLyMDOmgHTegDaAhHQKsAkVxCIDZ1fZQoaAZHQJQuNMlC1JFoB03oA2gIR0CrAZTmfXf7dX2UKGgGR0CSr1fZmI0qaAdN6ANoCEdAqwfzZcs19HV9lChoBkdAjbFEx7AtWmgHTegDaAhHQKsIDPqLS/l1fZQoaAZHQJJd/i3ocJdoB03oA2gIR0CrDNUkOZssdX2UKGgGR0CSBLWRzRx+aAdN6ANoCEdAqw3aqOtGNXV9lChoBkdAjD+j2Bas62gHTegDaAhHQKsVu9dNWU91fZQoaAZHQI0vRX0XgtRoB03oA2gIR0CrFdWO6unudX2UKGgGR0CKhgtoSL62aAdN6ANoCEdAqxqiOq//N3V9lChoBkdAi5dyv9tMwmgHTegDaAhHQKsbnzDn/1h1fZQoaAZHQIrU6n5zo2ZoB03oA2gIR0CrInWa+evqdX2UKGgGR0CL30gIQe3haAdN6ANoCEdAqyKd0HQhOnV9lChoBkdAi5fGi5/b02gHTegDaAhHQKsphJOnEVF1fZQoaAZHQIzU/QnhKlJoB03oA2gIR0CrKw+F10T2dX2UKGgGR0CLu0oLG7z1aAdN6ANoCEdAqzF1rIo3JnV9lChoBkdAi+/y57PY4GgHTegDaAhHQKsxjsNUfgd1fZQoaAZHQI4D1WIXTE1oB03oA2gIR0CrNkSsKb8WdX2UKGgGR0CMdQ7TUiIMaAdN6ANoCEdAqzdDbxmTT3V9lChoBkdAjukrFn7HhmgHTegDaAhHQKs9ZN2TxG51fZQoaAZHQJA2IghbGFVoB03oA2gIR0CrPXzgVGkOdX2UKGgGR0CTYHlPacqfaAdN6ANoCEdAq0N3oRqXW3V9lChoBkdAk5Ql0knkUGgHTegDaAhHQKtFEMkyDZl1fZQoaAZHQJYnkMQVbiZoB03oA2gIR0CrSyXyqdYodX2UKGgGR0CXkFIkJKJ3aAdN6ANoCEdAq0s+dqcmSnV9lChoBkdAlpE4JNTLn2gHTegDaAhHQKtQKjqv/zd1fZQoaAZHQJQ1nKbKA8VoB03oA2gIR0CrUScF6iTMdX2UKGgGR0CRYxqBVdX1aAdN6ANoCEdAq1c863iJf3V9lChoBkdAjltVPepGWmgHTegDaAhHQKtXVbL2YfJ1fZQoaAZHQIv7HCyhSLtoB03oA2gIR0CrXYPhQ3xXdX2UKGgGR0CPSLZ/0/W2aAdN6ANoCEdAq17OzjWCmXV9lChoBkdAk8d/g3tKI2gHTegDaAhHQKtk86cRUWF1fZQoaAZHQJHo2S4e9zxoB03oA2gIR0CrZQx1HOKPdX2UKGgGR0CQT7EJBw+/aAdN6ANoCEdAq2nXUF0PpnV9lChoBkdAklIUIcBEKGgHTegDaAhHQKtq3xQSBbx1fZQoaAZHQJCb+/Ho5ghoB03oA2gIR0CrcQQU5+6RdX2UKGgGR0CMgIhvBJqZaAdN6ANoCEdAq3EdGd7OV3V9lChoBkdAi+9ltKqXGGgHTegDaAhHQKt3p83uNPx1fZQoaAZHQIcQ5Cv5gw5oB03oA2gIR0CreMItUXHjdX2UKGgGR0CBjL1OCXhPaAdN6ANoCEdAq379j/dZaHV9lChoBkdAiN8LYwqRU2gHTegDaAhHQKt/FqyGBWh1fZQoaAZHQIiF1v0h/y5oB03oA2gIR0CrhATQmeDndX2UKGgGR0CBAQKiwjdIaAdN6ANoCEdAq4UD5sTFl3V9lChoBkdAi4fI68xsVWgHTegDaAhHQKuLDROUMXt1fZQoaAZHQImxwEU0vXdoB03oA2gIR0CriyU/OdGzdX2UKGgGR0CFrsg6EJ0GaAdN6ANoCEdAq5Gp9iMHbHV9lChoBkdAhoatZFG5MGgHTegDaAhHQKuSqFEiMYN1fZQoaAZHQIgXwRmK64FoB03oA2gIR0CrmNCPZIxydX2UKGgGR0CJJTxjJ+2FaAdN6ANoCEdAq5jpSvTw2HV9lChoBkdAiDg1Gsmv4mgHTegDaAhHQKudymplz2h1fZQoaAZHQIud6g/TsppoB03oA2gIR0CrnsRT850bdX2UKGgGR0CKLIeFtbcHaAdN6ANoCEdAq6UISzw+dXV9lChoBkdAjNvyfDk2gmgHTegDaAhHQKulLF4LThJ1fZQoaAZHQIh/yDmKZUloB03oA2gIR0Crq3JzT4L1dX2UKGgGR0CJ6VUG3WnTaAdN6ANoCEdAq6x2UbDMvHV9lChoBkdAivP+4b0e2mgHTegDaAhHQKuylNhVlwt1fZQoaAZHQILVcHWz4UNoB03oA2gIR0Crsq2FWXC1dX2UKGgGR0B8XSsJY1YRaAdN6ANoCEdAq7eA4ffXPXV9lChoBkdAit5TCtRvWGgHTegDaAhHQKu4hCWNWEN1fZQoaAZHQIJFO5xzaK1oB03oA2gIR0Crv3YO2AoYdX2UKGgGR0CHRP5HEuQIaAdN6ANoCEdAq7+d+5OJtXV9lChoBkdAjafqCg9Ne2gHTegDaAhHQKvFgegctGx1fZQoaAZHQI2JxiLEUCdoB03oA2gIR0Crxo3dKujidX2UKGgGR0CMJ0xkd3jdaAdN6ANoCEdAq8zgD3dsSHV9lChoBkdAkMhGLYPGyWgHTegDaAhHQKvM+fp2U0N1fZQoaAZHQI0lGyNXHR1oB03oA2gIR0Cr0dufukULdX2UKGgGR0CKa7mGM4tIaAdN6ANoCEdAq9Lj9n9NvnV9lChoBkdAjAQW+oLofWgHTegDaAhHQKvakP1+RYB1fZQoaAZHQIgcQVGkN4JoB03oA2gIR0Cr2rhwuM/AdX2UKGgGR0CN8fgVoHs1aAdN6ANoCEdAq9/uieumrXV9lChoBkdAiEe6L4vexmgHTegDaAhHQKvg/BDXvph1fZQoaAZHQIoRJVsDW9VoB03oA2gIR0Cr5x4NZvDQdX2UKGgGR0CMfjLMcIZ7aAdN6ANoCEdAq+c2lyimEXV9lChoBkdAjRLOXu3MIWgHTegDaAhHQKvr+NCqp991fZQoaAZHQI4M/NcGC7NoB03oA2gIR0Cr7PNL127ndX2UKGgGR0CM3gFPi1iOaAdN6ANoCEdAq/S/gUDdQHV9lChoBkdAjHa3hfjS5WgHTegDaAhHQKv06L7XQMR1fZQoaAZHQJB9FE6T4cpoB03oA2gIR0Cr+ecS5AhTdX2UKGgGR0CQVqF1B+nZaAdN6ANoCEdAq/rnSro4dnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}