File size: 5,263 Bytes
7995c14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: llama3
base_model: openchat/openchat-3.6-8b-20240522
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: openchat-3.6-8b-20240522_iter1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openchat-3.6-8b-20240522_iter1

This model is a fine-tuned version of [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5244
- Rewards/chosen: -1.3982
- Rewards/rejected: -2.1254
- Rewards/accuracies: 0.7200
- Rewards/margins: 0.7272
- Logps/rejected: -171.7692
- Logps/chosen: -199.1642
- Logits/rejected: -1.2657
- Logits/chosen: -1.3423

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6926        | 0.1153 | 100  | 0.6938          | -0.0143        | -0.0002          | 0.4000             | -0.0142         | -150.5169      | -185.3253    | -1.4917         | -1.5923       |
| 0.679         | 0.2307 | 200  | 0.6922          | -0.1109        | -0.1115          | 0.5600             | 0.0006          | -151.6300      | -186.2912    | -1.4630         | -1.5610       |
| 0.6486        | 0.3460 | 300  | 0.6787          | -0.2780        | -0.2833          | 0.6400             | 0.0052          | -153.3482      | -187.9626    | -1.4348         | -1.5306       |
| 0.6411        | 0.4614 | 400  | 0.6542          | -0.3856        | -0.5726          | 0.6800             | 0.1870          | -156.2416      | -189.0385    | -1.3933         | -1.4854       |
| 0.6012        | 0.5767 | 500  | 0.6362          | -0.6283        | -0.8095          | 0.6800             | 0.1812          | -158.6099      | -191.4649    | -1.3534         | -1.4404       |
| 0.618         | 0.6921 | 600  | 0.6056          | -0.6784        | -1.0395          | 0.7200             | 0.3611          | -160.9102      | -191.9662    | -1.3254         | -1.4087       |
| 0.5593        | 0.8074 | 700  | 0.5816          | -0.7838        | -1.2369          | 0.7200             | 0.4531          | -162.8839      | -193.0198    | -1.3188         | -1.4025       |
| 0.6186        | 0.9228 | 800  | 0.5684          | -0.9097        | -1.3887          | 0.7200             | 0.4790          | -164.4020      | -194.2788    | -1.3118         | -1.3925       |
| 0.435         | 1.0381 | 900  | 0.5445          | -1.0726        | -1.6299          | 0.6800             | 0.5573          | -166.8143      | -195.9084    | -1.2884         | -1.3688       |
| 0.3574        | 1.1535 | 1000 | 0.5431          | -1.2392        | -1.8217          | 0.7600             | 0.5825          | -168.7325      | -197.5744    | -1.2871         | -1.3622       |
| 0.3629        | 1.2688 | 1100 | 0.5291          | -1.3493        | -2.0023          | 0.7600             | 0.6530          | -170.5380      | -198.6750    | -1.2698         | -1.3464       |
| 0.372         | 1.3842 | 1200 | 0.5354          | -1.4103        | -2.0374          | 0.6800             | 0.6270          | -170.8891      | -199.2855    | -1.2711         | -1.3467       |
| 0.4256        | 1.4995 | 1300 | 0.5290          | -1.3264        | -2.0119          | 0.7200             | 0.6855          | -170.6346      | -198.4460    | -1.2728         | -1.3499       |
| 0.3428        | 1.6149 | 1400 | 0.5261          | -1.3729        | -2.0747          | 0.6800             | 0.7019          | -171.2626      | -198.9109    | -1.2725         | -1.3481       |
| 0.3868        | 1.7302 | 1500 | 0.5269          | -1.3721        | -2.1075          | 0.7200             | 0.7354          | -171.5904      | -198.9033    | -1.2656         | -1.3428       |
| 0.3909        | 1.8456 | 1600 | 0.5235          | -1.3906        | -2.1287          | 0.7200             | 0.7380          | -171.8019      | -199.0883    | -1.2676         | -1.3435       |
| 0.3738        | 1.9609 | 1700 | 0.5244          | -1.3982        | -2.1254          | 0.7200             | 0.7272          | -171.7692      | -199.1642    | -1.2657         | -1.3423       |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1