File size: 3,018 Bytes
599e76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama31-it-preference_data_v2_800K_wsafety
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: null
base_model: /var/lib/condor/execute/slot1/dir_3405246/llama31_pretrain_pad
bf16: true
dataset_prepared_path: /var/lib/condor/execute/slot1/dir_3405246/prepare
dataset_processes: 48
datasets:
- conversation: llama-3
path: RLHFlow/preference_data_v2_80K_wsafety
split: train
train_on_split: train
type: sharegpt.load_ultrachat
ddp: null
debug: null
deepspeed: null
early_stopping_patience: null
eval_steps: null
eval_table_max_new_tokens: null
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: RyanYr/llama31-it-preference_data_v2_800K_wsafety
hub_strategy: every_save
learning_rate: 2.0e-06
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 2
lora_model_dir: null
lr_scheduler: cosine
max_grad_norm: 1.0
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: paged_adamw_32bit
output_dir: /var/lib/condor/execute/slot1/dir_3405246/output-08-14-2024-10:43
pad_to_sequence_len: true
sample_packing: true
save_safetensors: true
save_steps: 100
save_strategy: steps
save_total_limit: 1
sequence_len: 4096
special_tokens: null
strict: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: yyr
wandb_log_model: null
wandb_name: llama31-8b-it_preference_data_v2_80K_wsafety
wandb_project: preference-models
wandb_watch: null
warmup_ratio: 0.03
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# llama31-it-preference_data_v2_800K_wsafety
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|