File size: 3,024 Bytes
67f28dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama31-it-preference_data_v2_800K_wsafety
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: null
base_model: /var/lib/condor/execute/slot1/dir_2782837/llama31_pretrain_pad
bf16: auto
dataset_prepared_path: /var/lib/condor/execute/slot1/dir_2782837/prepare
dataset_processes: 48
datasets:
- conversation: llama-3
  path: RLHFlow/preference_data_v2_80K_wsafety
  split: train
  train_on_split: train
  type: sharegpt.load_ultrachat
ddp: null
debug: null
deepspeed: null
early_stopping_patience: null
eval_steps: null
eval_table_max_new_tokens: null
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: RyanYr/llama31-it-preference_data_v2_800K_wsafety
hub_strategy: every_save
learning_rate: 5.0e-06
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 2
lora_model_dir: null
lr_scheduler: cosine
max_grad_norm: 1.0
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch_fused
output_dir: /var/lib/condor/execute/slot1/dir_2782837/output-08-11-2024-18:22
pad_to_sequence_len: true
sample_packing: true
save_safetensors: true
save_steps: 100
save_strategy: steps
save_total_limit: 1
sequence_len: 2048
special_tokens: null
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: yyr
wandb_log_model: null
wandb_name: llama31-8b-it_preference_data_v2_80K_wsafety
wandb_project: preference-models
wandb_watch: null
warmup_steps: 40
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# llama31-it-preference_data_v2_800K_wsafety

This model was trained from scratch on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1