File size: 2,362 Bytes
612f9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: gpt2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: js-fake-bach-epochs20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# js-fake-bach-epochs20

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5973
- Accuracy: 0.0033

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006058454513356471
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.2427        | 1.2550  | 315  | 0.8253          | 0.0007   |
| 0.8106        | 2.5100  | 630  | 0.7777          | 0.0021   |
| 0.7663        | 3.7649  | 945  | 0.7449          | 0.0017   |
| 0.7263        | 5.0199  | 1260 | 0.6997          | 0.0027   |
| 0.689         | 6.2749  | 1575 | 0.6683          | 0.0018   |
| 0.6524        | 7.5299  | 1890 | 0.6396          | 0.0008   |
| 0.6158        | 8.7849  | 2205 | 0.6139          | 0.0021   |
| 0.5807        | 10.0398 | 2520 | 0.5981          | 0.0010   |
| 0.5437        | 11.2948 | 2835 | 0.5848          | 0.0030   |
| 0.5109        | 12.5498 | 3150 | 0.5841          | 0.0026   |
| 0.4781        | 13.8048 | 3465 | 0.5799          | 0.0028   |
| 0.4453        | 15.0598 | 3780 | 0.5867          | 0.0034   |
| 0.4169        | 16.3147 | 4095 | 0.5915          | 0.0034   |
| 0.3972        | 17.5697 | 4410 | 0.5968          | 0.0034   |
| 0.3847        | 18.8247 | 4725 | 0.5973          | 0.0033   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0