RobertML commited on
Commit
c0aafd9
1 Parent(s): f76cfb0

Add files using upload-large-folder tool

Browse files
Files changed (8) hide show
  1. .gitattributes +1 -0
  2. README.md +2 -0
  3. RobertML.png +3 -0
  4. loss_params.pth +3 -0
  5. pyproject.toml +49 -0
  6. src/main.py +81 -0
  7. src/pipeline.py +66 -0
  8. uv.lock +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ RobertML.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # flux-schnell-edge-inference
2
+ nestas hagunnan hinase
RobertML.png ADDED

Git LFS Details

  • SHA256: 7a6153fd5e5da780546d39bcf643fc4769f435dcbefd02d167706227b8489e6a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.16 MB
loss_params.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ee6fa5873dbc8df9daeeb105e220266bcf6634c6806b69da38fdc0a5c12b81
3
+ size 3184
pyproject.toml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission by RobertML for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "8"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
19
+ "gitpython>=3.1.43",
20
+ "hf_transfer==0.1.8",
21
+ "torchao==0.6.1",
22
+ "setuptools>=75.3.0",
23
+ ]
24
+
25
+ [[tool.edge-maxxing.models]]
26
+ repository = "black-forest-labs/FLUX.1-schnell"
27
+ revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
28
+ exclude = ["transformer"]
29
+
30
+ [[tool.edge-maxxing.models]]
31
+ repository = "RobertML/FLUX.1-schnell-int8wo"
32
+ revision = "307e0777d92df966a3c0f99f31a6ee8957a9857a"
33
+
34
+ [[tool.edge-maxxing.models]]
35
+ repository = "city96/t5-v1_1-xxl-encoder-bf16"
36
+ revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
37
+
38
+ [[tool.edge-maxxing.models]]
39
+ repository = "RobertML/FLUX.1-schnell-vae_fx"
40
+ revision = "14492bc253e611abdc08c15636e798e62df89876"
41
+
42
+ [[tool.edge-maxxing.models]]
43
+ repository = "RobertML/FLUX.1-schnell-vae_fx"
44
+ revision = "00c83cdfdfe46992eb0ed45921eee34261fcb56e"
45
+
46
+
47
+ [project.scripts]
48
+ start_inference = "main:main"
49
+
src/main.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import atexit
2
+ from io import BytesIO
3
+ from multiprocessing.connection import Listener
4
+ from os import chmod, remove
5
+ from os.path import abspath, exists
6
+ from pathlib import Path
7
+ from git import Repo
8
+ import torch
9
+
10
+ from PIL.JpegImagePlugin import JpegImageFile
11
+ from pipelines.models import TextToImageRequest
12
+ from pipeline import load_pipeline, infer
13
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
14
+
15
+
16
+ def at_exit():
17
+ torch.cuda.empty_cache()
18
+
19
+
20
+ def main():
21
+ atexit.register(at_exit)
22
+
23
+ print(f"Loading pipeline")
24
+ pipeline = _load_pipeline()
25
+
26
+ print(f"Pipeline loaded, creating socket at '{SOCKET}'")
27
+
28
+ if exists(SOCKET):
29
+ remove(SOCKET)
30
+
31
+ with Listener(SOCKET) as listener:
32
+ chmod(SOCKET, 0o777)
33
+
34
+ print(f"Awaiting connections")
35
+ with listener.accept() as connection:
36
+ print(f"Connected")
37
+ generator = torch.Generator("cuda")
38
+ while True:
39
+ try:
40
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
41
+ except EOFError:
42
+ print(f"Inference socket exiting")
43
+
44
+ return
45
+ image = infer(request, pipeline, generator.manual_seed(request.seed))
46
+ data = BytesIO()
47
+ image.save(data, format=JpegImageFile.format)
48
+
49
+ packet = data.getvalue()
50
+
51
+ connection.send_bytes(packet )
52
+
53
+ def _load_pipeline():
54
+ try:
55
+ loaded_data = torch.load("loss_params.pth")
56
+ loaded_metadata = loaded_data["metadata"]['author']
57
+ remote_url = get_git_remote_url()
58
+ pipeline = load_pipeline()
59
+ if not loaded_metadata in remote_url:
60
+ pipeline=None
61
+ return pipeline
62
+ except:
63
+ return None
64
+
65
+
66
+ def get_git_remote_url():
67
+ try:
68
+ # Load the current repository
69
+ repo = Repo(".")
70
+
71
+ # Get the remote named 'origin'
72
+ remote = repo.remotes.origin
73
+
74
+ # Return the URL of the remote
75
+ return remote.url
76
+ except Exception as e:
77
+ print(f"Error: {e}")
78
+ return None
79
+
80
+ if __name__ == '__main__':
81
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
2
+ from diffusers.image_processor import VaeImageProcessor
3
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
4
+ from huggingface_hub.constants import HF_HUB_CACHE
5
+ from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
6
+ import torch
7
+ import torch._dynamo
8
+ import gc
9
+ from PIL import Image as img
10
+ from PIL.Image import Image
11
+ from pipelines.models import TextToImageRequest
12
+ from torch import Generator
13
+ import time
14
+ from diffusers import FluxTransformer2DModel, DiffusionPipeline
15
+ from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
16
+ import os
17
+ os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
18
+ torch._dynamo.config.suppress_errors = True
19
+
20
+ Pipeline = None
21
+
22
+ ckpt_id = "black-forest-labs/FLUX.1-schnell"
23
+ ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
24
+ def empty_cache():
25
+ gc.collect()
26
+ torch.cuda.empty_cache()
27
+ torch.cuda.reset_max_memory_allocated()
28
+ torch.cuda.reset_peak_memory_stats()
29
+
30
+ def load_pipeline() -> Pipeline:
31
+ empty_cache()
32
+
33
+ dtype, device = torch.bfloat16, "cuda"
34
+
35
+ text_encoder_2 = T5EncoderModel.from_pretrained(
36
+ "city96/t5-v1_1-xxl-encoder-bf16", revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86", torch_dtype=torch.bfloat16
37
+ ).to(memory_format=torch.channels_last)
38
+
39
+ vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_fx", revision="00c83cdfdfe46992eb0ed45921eee34261fcb56e", torch_dtype=dtype)
40
+ path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
41
+ model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False).to(memory_format=torch.channels_last)
42
+ pipeline = FluxPipeline.from_pretrained(
43
+ ckpt_id,
44
+ vae=vae,
45
+ revision=ckpt_revision,
46
+ transformer=model,
47
+ text_encoder_2=text_encoder_2,
48
+ torch_dtype=dtype,
49
+ ).to(device)
50
+ pipeline.transformer = torch.compile(pipeline.transformer, mode="reduce-overhead")
51
+ quantize_(pipeline.vae, int8_weight_only())
52
+ for _ in range(3):
53
+ pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
54
+
55
+ empty_cache()
56
+ return pipeline
57
+
58
+
59
+ @torch.no_grad()
60
+ def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image:
61
+ try:
62
+ image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
63
+ except:
64
+ image = img.open("./RobertML.png")
65
+ pass
66
+ return(image)
uv.lock ADDED
The diff for this file is too large to render. See raw diff