RinInori commited on
Commit
1dcb715
1 Parent(s): fbe235f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -5,6 +5,9 @@ language:
5
  pipeline_tag: text-classification
6
  ---
7
 
 
 
 
8
  To Run the app: https://huggingface.co/spaces/RinInori/vicuna_finetuned_6_sentiments?logs=build
9
 
10
  Github fine-tune code link: https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis
@@ -16,4 +19,34 @@ BASE_MODEL = "TheBloke/vicuna-7B-1.1-HF"
16
 
17
  LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments"
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
5
  pipeline_tag: text-classification
6
  ---
7
 
8
+ # Vicuna_finetune_sentiment_analysis
9
+ Vicuna_finetune_sentiment_analysis through PEFT and LoRA.
10
+
11
  To Run the app: https://huggingface.co/spaces/RinInori/vicuna_finetuned_6_sentiments?logs=build
12
 
13
  Github fine-tune code link: https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis
 
19
 
20
  LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments"
21
 
22
+ ---
23
+
24
+ Vicuna is created by fine-tuning a LLaMA base model using approximately 70K user-shared conversations gathered from ShareGPT.com with public APIs.
25
+ To find more about Vicuna here: https://lmsys.org/blog/2023-03-30-vicuna/
26
+
27
+ To train a custom dataset on top of Vicuna if we don’t have good access to data-center grade GPU, is to fine-tune it through PEFT and LoRA.
28
+
29
+ PEFT = parameter-Efficient Fine_Tuning of Billion-Scale Models on Low-Resource hardware.
30
+
31
+ LoRA = Low-Rank Adaptation of Large Language Models is a training method that accelerates the training of large models while consuming less memory.
32
+ It adds pairs of rank-decomposition weight matrices (called update matrices) to existing weights, and only trains those newly added weights.
33
+
34
+ ---
35
+
36
+ ### To RUN APP: https://huggingface.co/spaces/RinInori/vicuna_finetuned_6_sentiments
37
+
38
+ ![Image description](https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis/blob/main/vicuna_result_correct.jpg?raw=true)
39
+
40
+ -----------------
41
+ ### Model Hub: https://huggingface.co/RinInori/vicuna_finetuned_6_sentiments
42
+
43
+ ![Image description](https://github.com/hennypurwadi/Bert_FineTune_Sentiment_Analysis/blob/main/images/SaveModel_Tokenizer_To_Huggingface.jpg?raw=true)
44
+ ---
45
+
46
+ Ref: https://www.youtube.com/watch?v=Us5ZFp16PaU
47
+
48
+ Ref: https://arxiv.org/abs/2106.09685
49
+
50
+ Ref: https://huggingface.co/docs/diffusers/training/lora#lowrank-adaptation-of-large-language-models-lora
51
 
52
+ Ref: Hutchinson, B., Ostendorf, M., & Fazel, M. (2011, September). Low Rank Language Models for Small Training Sets. IEEE Signal Processing Letters, 18(9), 489–492. https://doi.org/10.1109/lsp.2011.2160850