RinInori commited on
Commit
b50123f
1 Parent(s): f2a2066

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -64,7 +64,7 @@ def predict_sentiments(model_name, tokenizer_name, input_file):
64
 
65
  df = pd.read_csv(input_file)
66
 
67
- # Tokenize the input text
68
  test_inputs = tokenizer(list(df['text']), padding=True, truncation=True, max_length=128, return_tensors='pt')
69
 
70
  # Make predictions
@@ -91,7 +91,7 @@ tokenizer_name = "RinInori/bert-base-uncased_finetune_sentiments"
91
  #Predict Unlabeled data
92
  predict_sentiments(model_name, tokenizer_name, '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America.csv')
93
 
94
- # Load the predicted data
95
  df_Am = pd.read_csv('/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv')
96
  df_Am.head()
97
 
@@ -106,13 +106,13 @@ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, do_lower_case=True)
106
  input_file = '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv'
107
  df_Am = pd.read_csv(input_file)
108
 
109
- # Examine the distribution of data based on labels
110
  sentences = df_Am.text.values
111
  print("Distribution of data based on labels: ", df_Am.label.value_counts())
112
 
113
  MAX_LEN = 512
114
 
115
- # Plot the label distribution
116
  label_count = df_Am['label'].value_counts()
117
  plot_users = label_count.plot.pie(autopct='%1.1f%%', figsize=(4, 4))
118
  plt.rc('axes', unicode_minus=False)
 
64
 
65
  df = pd.read_csv(input_file)
66
 
67
+ # Tokenize input text
68
  test_inputs = tokenizer(list(df['text']), padding=True, truncation=True, max_length=128, return_tensors='pt')
69
 
70
  # Make predictions
 
91
  #Predict Unlabeled data
92
  predict_sentiments(model_name, tokenizer_name, '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America.csv')
93
 
94
+ # Load predicted data
95
  df_Am = pd.read_csv('/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv')
96
  df_Am.head()
97
 
 
106
  input_file = '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv'
107
  df_Am = pd.read_csv(input_file)
108
 
109
+ # Examine distribution of data based on labels
110
  sentences = df_Am.text.values
111
  print("Distribution of data based on labels: ", df_Am.label.value_counts())
112
 
113
  MAX_LEN = 512
114
 
115
+ # Plot label
116
  label_count = df_Am['label'].value_counts()
117
  plot_users = label_count.plot.pie(autopct='%1.1f%%', figsize=(4, 4))
118
  plt.rc('axes', unicode_minus=False)