YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
mistral-nouns500 - GGUF
- Model creator: https://huggingface.co/waterdrops0/
- Original model: https://huggingface.co/waterdrops0/mistral-nouns500/
Name | Quant method | Size |
---|---|---|
mistral-nouns500.Q2_K.gguf | Q2_K | 2.53GB |
mistral-nouns500.IQ3_XS.gguf | IQ3_XS | 2.81GB |
mistral-nouns500.IQ3_S.gguf | IQ3_S | 2.96GB |
mistral-nouns500.Q3_K_S.gguf | Q3_K_S | 2.95GB |
mistral-nouns500.IQ3_M.gguf | IQ3_M | 3.06GB |
mistral-nouns500.Q3_K.gguf | Q3_K | 3.28GB |
mistral-nouns500.Q3_K_M.gguf | Q3_K_M | 3.28GB |
mistral-nouns500.Q3_K_L.gguf | Q3_K_L | 3.56GB |
mistral-nouns500.IQ4_XS.gguf | IQ4_XS | 3.67GB |
mistral-nouns500.Q4_0.gguf | Q4_0 | 3.83GB |
mistral-nouns500.IQ4_NL.gguf | IQ4_NL | 3.87GB |
mistral-nouns500.Q4_K_S.gguf | Q4_K_S | 3.86GB |
mistral-nouns500.Q4_K.gguf | Q4_K | 4.07GB |
mistral-nouns500.Q4_K_M.gguf | Q4_K_M | 4.07GB |
mistral-nouns500.Q4_1.gguf | Q4_1 | 4.24GB |
mistral-nouns500.Q5_0.gguf | Q5_0 | 4.65GB |
mistral-nouns500.Q5_K_S.gguf | Q5_K_S | 4.65GB |
mistral-nouns500.Q5_K.gguf | Q5_K | 4.78GB |
mistral-nouns500.Q5_K_M.gguf | Q5_K_M | 4.78GB |
mistral-nouns500.Q5_1.gguf | Q5_1 | 5.07GB |
mistral-nouns500.Q6_K.gguf | Q6_K | 5.53GB |
mistral-nouns500.Q8_0.gguf | Q8_0 | 7.17GB |
Original model description:
license: cc0-1.0 library_name: transformers pipeline_tag: text-generation tags: - text-generation - causal-lm - mistral - fine-tuned language: en base_model: mistralai/Mistral-7B-v0.1
Mistral-7B Fine-Tuned on Nouns DAO Comments
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on a custom dataset of Nouns DAO comments.
Model Description
The model has been fine-tuned to generate comments by Nouns DAO members on proposals, focusing on community discussions and insights.
Intended Use
- Primary Use Case: Generating realistic DAO member comments for proposals.
- Languages Supported: English (en).
How to Use
You can use this model with the Transformers library:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "your_username/your_model_name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" or "cpu")
prompt = "The following is a comment by a Nouns DAO member on the proposal to gift 1000 glasses to kids in need:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, repetition_penalty=1.15, temperature=0.7, top_p=0.9)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
- Downloads last month
- 1
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support