RichardErkhov commited on
Commit
1f955fe
1 Parent(s): 5220c39

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +169 -0
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ stablelm-2-1_6b-chat - bnb 8bits
11
+ - Model creator: https://huggingface.co/stabilityai/
12
+ - Original model: https://huggingface.co/stabilityai/stablelm-2-1_6b-chat/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ datasets:
20
+ - HuggingFaceH4/ultrachat_200k
21
+ - allenai/ultrafeedback_binarized_cleaned
22
+ - meta-math/MetaMathQA
23
+ - WizardLM/WizardLM_evol_instruct_V2_196k
24
+ - openchat/openchat_sharegpt4_dataset
25
+ - LDJnr/Capybara
26
+ - Intel/orca_dpo_pairs
27
+ - hkust-nlp/deita-10k-v0
28
+ - teknium/OpenHermes-2.5
29
+
30
+ language:
31
+ - en
32
+ tags:
33
+ - causal-lm
34
+ extra_gated_fields:
35
+ Name: text
36
+ Email: text
37
+ Country: text
38
+ Organization or Affiliation: text
39
+ I ALLOW Stability AI to email me about new model releases: checkbox
40
+ license: other
41
+ ---
42
+ # `StableLM 2 Chat 1.6B`
43
+
44
+ ## Model Description
45
+
46
+ `Stable LM 2 Chat 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
47
+
48
+ ## Usage
49
+
50
+ `StableLM 2 1.6B Chat` uses the following ChatML format:
51
+
52
+
53
+ ```python
54
+ from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-1_6b-chat')
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ 'stabilityai/stablelm-2-1_6b-chat',
59
+ device_map="auto",
60
+ )
61
+
62
+ prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
63
+ inputs = tokenizer.apply_chat_template(
64
+ prompt,
65
+ add_generation_prompt=True,
66
+ return_tensors='pt'
67
+ )
68
+
69
+ tokens = model.generate(
70
+ inputs.to(model.device),
71
+ max_new_tokens=100,
72
+ temperature=0.7,
73
+ do_sample=True
74
+ )
75
+ output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
76
+
77
+ print(output)
78
+ ```
79
+
80
+
81
+ ## Model Details
82
+
83
+ * **Developed by**: [Stability AI](https://stability.ai/)
84
+ * **Model type**: `StableLM 2 Chat 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
85
+ * **Language(s)**: English
86
+ * **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
87
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
88
+ * **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
89
+ * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-1_6b-chat/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
90
+ * **Contact**: For questions and comments about the model, please email `[email protected]`
91
+
92
+ ### Training Dataset
93
+
94
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
95
+ 1. SFT Datasets
96
+ - HuggingFaceH4/ultrachat_200k
97
+ - meta-math/MetaMathQA
98
+ - WizardLM/WizardLM_evol_instruct_V2_196k
99
+ - Open-Orca/SlimOrca
100
+ - openchat/openchat_sharegpt4_dataset
101
+ - LDJnr/Capybara
102
+ - hkust-nlp/deita-10k-v0
103
+ - teknium/OpenHermes-2.5
104
+
105
+ 2. Preference Datasets:
106
+ - allenai/ultrafeedback_binarized_cleaned
107
+ - Intel/orca_dpo_pairs
108
+ - argilla/dpo-mix-7k
109
+
110
+ ## Performance
111
+
112
+ ### MT-Bench
113
+
114
+ | Model | Size | MT-Bench |
115
+ |-------------------------|------|----------|
116
+ | Mistral-7B-Instruct-v0.2| 7B | 7.61 |
117
+ | Llama2-Chat | 70B | 6.86 |
118
+ | stablelm-zephyr-3b | 3B | 6.64 |
119
+ | MPT-30B-Chat | 30B | 6.39 |
120
+ | **stablelm-2-1_6b-chat** | **1.6B** | **5.83** |
121
+ | stablelm-2-zephyr-1.6b | 1.6B | 5.42 |
122
+ | Falcon-40B-Instruct | 40B | 5.17 |
123
+ | Qwen-1.8B-Chat | 1.8B | 4.95 |
124
+ | dolphin-2.6-phi-2 | 2.7B | 4.93 |
125
+ | phi-2 | 2.7B | 4.29 |
126
+ | TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
127
+
128
+ ### OpenLLM Leaderboard
129
+
130
+ | Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
131
+ |----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
132
+ | microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
133
+ | **stabilityai/stablelm-2-1_6b-chat** | 1.6B | 50.80% | 43.94% | 69.22% | 41.59% | 46.52% | 64.56% | 38.96% |
134
+ | stabilityai/stablelm-2-zephyr-1_6b | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
135
+ | microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
136
+ | stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
137
+ | mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
138
+ | KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
139
+ | openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
140
+ | iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
141
+ | TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
142
+
143
+
144
+ ## Use and Limitations
145
+
146
+ ### Intended Use
147
+
148
+ The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
149
+
150
+ ### Limitations and Bias
151
+
152
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
153
+
154
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
155
+ Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
156
+ Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
157
+ Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
158
+
159
+
160
+ ## How to Cite
161
+
162
+ ```bibtex
163
+ @misc{StableLM-2-1.6B,
164
+ url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
165
+ title={Stable LM 2 1.6B},
166
+ author={Stability AI Language Team}
167
+ }
168
+ ```
169
+