File size: 9,626 Bytes
f3f17f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


gemma-2-9b-it-DPO - GGUF
- Model creator: https://huggingface.co/princeton-nlp/
- Original model: https://huggingface.co/princeton-nlp/gemma-2-9b-it-DPO/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [gemma-2-9b-it-DPO.Q2_K.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q2_K.gguf) | Q2_K | 3.54GB |
| [gemma-2-9b-it-DPO.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.IQ3_XS.gguf) | IQ3_XS | 3.86GB |
| [gemma-2-9b-it-DPO.IQ3_S.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.IQ3_S.gguf) | IQ3_S | 4.04GB |
| [gemma-2-9b-it-DPO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q3_K_S.gguf) | Q3_K_S | 4.04GB |
| [gemma-2-9b-it-DPO.IQ3_M.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.IQ3_M.gguf) | IQ3_M | 4.19GB |
| [gemma-2-9b-it-DPO.Q3_K.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q3_K.gguf) | Q3_K | 4.43GB |
| [gemma-2-9b-it-DPO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q3_K_M.gguf) | Q3_K_M | 4.43GB |
| [gemma-2-9b-it-DPO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q3_K_L.gguf) | Q3_K_L | 4.78GB |
| [gemma-2-9b-it-DPO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.IQ4_XS.gguf) | IQ4_XS | 4.86GB |
| [gemma-2-9b-it-DPO.Q4_0.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q4_0.gguf) | Q4_0 | 5.07GB |
| [gemma-2-9b-it-DPO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.IQ4_NL.gguf) | IQ4_NL | 5.1GB |
| [gemma-2-9b-it-DPO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q4_K_S.gguf) | Q4_K_S | 5.1GB |
| [gemma-2-9b-it-DPO.Q4_K.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q4_K.gguf) | Q4_K | 5.37GB |
| [gemma-2-9b-it-DPO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q4_K_M.gguf) | Q4_K_M | 5.37GB |
| [gemma-2-9b-it-DPO.Q4_1.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q4_1.gguf) | Q4_1 | 5.55GB |
| [gemma-2-9b-it-DPO.Q5_0.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q5_0.gguf) | Q5_0 | 6.04GB |
| [gemma-2-9b-it-DPO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q5_K_S.gguf) | Q5_K_S | 6.04GB |
| [gemma-2-9b-it-DPO.Q5_K.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q5_K.gguf) | Q5_K | 6.19GB |
| [gemma-2-9b-it-DPO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q5_K_M.gguf) | Q5_K_M | 6.19GB |
| [gemma-2-9b-it-DPO.Q5_1.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q5_1.gguf) | Q5_1 | 6.52GB |
| [gemma-2-9b-it-DPO.Q6_K.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q6_K.gguf) | Q6_K | 7.07GB |
| [gemma-2-9b-it-DPO.Q8_0.gguf](https://huggingface.co/RichardErkhov/princeton-nlp_-_gemma-2-9b-it-DPO-gguf/blob/main/gemma-2-9b-it-DPO.Q8_0.gguf) | Q8_0 | 9.15GB |




Original model description:
---
base_model: google/gemma-2-9b-it
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- princeton-nlp/gemma2-ultrafeedback-armorm
model-index:
- name: princeton-nlp/gemma-2-9b-it-DPO 
  results: []
---

# gemma-2-9b-it-DPO Model Card

This model was trained under the same setup as [gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO), with the DPO objective.

SimPO (Simple Preference Optimization) is an offline preference optimization algorithm designed to enhance the training of large language models (LLMs) with preference optimization datasets. SimPO aligns the reward function with the generation likelihood, eliminating the need for a reference model and incorporating a target reward margin to boost performance. Please refer to our [preprint](https://arxiv.org/pdf/2405.14734) and [github repo](https://github.com/princeton-nlp/SimPO) for more details.

## Model Details

### Model Description

We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the DPO objective.

- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
- **Model type:** Causal Language Model
- **License:** gemma
- **Finetuned from model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/princeton-nlp/SimPO
- **Paper:** https://arxiv.org/pdf/2405.14734


## How to Get Started with the Model
```
import torch
from transformers import pipeline

model_id = "princeton-nlp/gemma-2-9b-it-DPO"

generator = pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
print(outputs[0]['generated_text'])
```

## Training Details

### Training Data

We use [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) as the preference optimization dataset.

#### Training Hyperparameters

We used the following hyperparameters:
- learning rate: 5e-7
- batch size: 128
- beta: 0.01

The other hyperparameters are kept the same with our [SimPO recipe](https://github.com/princeton-nlp/SimPO/blob/main/training_configs/gemma-2-9b-it-simpo.yaml).

#### Speeds, Sizes, Times

Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 150 mins to finish on 8xH100 GPUs.

## Evaluation Results


|               models                    | AE2 LC | AE2 WR | AE2 Length |  AH  | AH Length |  GSM | GSM Length | MMLU | MMLU Length |
|-----------------------------------|:------:|:------:|:----------:|:----:|:---------:|:----:|:----------:|:----:|:-----------:|
|        [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)       |  51.1  |  38.1  |    1571    | 40.8 |    545    | 87.4 |     395    | 72.7 |     515     |
|  [princeton-nlp/gemma-2-9b-it-DPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-DPO)  |  67.8  |  65.4  |    2016    | 58.9 |    717    | 88.5 |     392    | 72.2 |     624     |
| [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) |  72.4  |  65.9  |    1833    | 59.1 |    693    | 88.0 |     341    | 72.2 |     441     |


## Technical Specifications

### Model Architecture and Objective

The model architecture is based on [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). We use the DPO training objective.

#### Hardware

We used 8xH100 GPUs for model training.

#### Software

Training was done using the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library.

## Citation

gemma model:
```
@article{gemma_2024,
    title={Gemma},
    url={https://www.kaggle.com/m/3301},
    DOI={10.34740/KAGGLE/M/3301},
    publisher={Kaggle},
    author={Gemma Team},
    year={2024}
}
```

DPO paper:
```
@article{rafailov2024direct,
  title={Direct Preference Optimization: Your language model is secretly a reward model},
  author={Rafailov, Rafael and Sharma, Archit and Mitchell, Eric and Manning, Christopher D and Ermon, Stefano and Finn, Chelsea},
  journal={Advances in Neural Information Processing Systems},
  volume={36},
  year={2024}
}
```

SimPO paper:
```
@article{meng2024simpo,
  title={{SimPO}: Simple preference optimization with a reference-free reward},
  author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
  journal={arXiv preprint arXiv:2405.14734},
  year={2024}
}
```

UltraFeedback paper:
```
@article{cui2023ultrafeedback,
  title={{UltraFeedback}: Boosting language models with high-quality feedback},
  author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
  journal={arXiv preprint arXiv:2310.01377},
  year={2023}
}
```

ArmoRM paper:
```
@article{wang2024interpretable,
  title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
  author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
  journal={arXiv preprint arXiv:2406.12845},
  year={2024}
}
```