RichardErkhov commited on
Commit
fabaf17
·
verified ·
1 Parent(s): be34e3b

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ sft_op - AWQ
11
+ - Model creator: https://huggingface.co/oreva/
12
+ - Original model: https://huggingface.co/oreva/sft_op/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ base_model: facebook/opt-350m
21
+ tags:
22
+ - trl
23
+ - sft
24
+ - generated_from_trainer
25
+ model-index:
26
+ - name: sft_op
27
+ results: []
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/orevaoghenne/huggingface/runs/a300iaya)
34
+ # sft_op
35
+
36
+ This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 3.0723
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 1.41e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 16
62
+ - total_train_batch_size: 256
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 1.0
66
+
67
+ ### Training results
68
+
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.42.4
74
+ - Pytorch 2.3.1
75
+ - Datasets 2.20.0
76
+ - Tokenizers 0.19.1
77
+
78
+