RichardErkhov commited on
Commit
4b0e1a7
1 Parent(s): 6b3486e

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +150 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Aira-2-portuguese-560M - bnb 4bits
11
+ - Model creator: https://huggingface.co/nicholasKluge/
12
+ - Original model: https://huggingface.co/nicholasKluge/Aira-2-portuguese-560M/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: bigscience-bloom-rail-1.0
20
+ datasets:
21
+ - nicholasKluge/instruct-aira-dataset
22
+ language:
23
+ - pt
24
+ metrics:
25
+ - accuracy
26
+ library_name: transformers
27
+ tags:
28
+ - alignment
29
+ - instruction tuned
30
+ - text generation
31
+ - conversation
32
+ - assistant
33
+ pipeline_tag: text-generation
34
+ widget:
35
+ - text: "<|startofinstruction|>Me explique o que é Aprendizagem de Máquina?<|endofinstruction|>"
36
+ example_title: Aprendizagem de Máquina
37
+ - text: "<|startofinstruction|>Você sabe alguma coisa sobre a Ética das Virtudes?<|endofinstruction|>"
38
+ example_title: Ética
39
+ - text: "<|startofinstruction|>Como eu posso fazer a minha namorada feliz?<|endofinstruction|>"
40
+ example_title: Conselho
41
+ inference:
42
+ parameters:
43
+ repetition_penalty: 1.2
44
+ temperature: 0.2
45
+ top_k: 30
46
+ top_p: 0.3
47
+ max_new_tokens: 100
48
+ length_penalty: 0.3
49
+ early_stopping: true
50
+ co2_eq_emissions:
51
+ emissions: 800
52
+ source: CodeCarbon
53
+ training_type: fine-tuning
54
+ geographical_location: Singapore
55
+ hardware_used: NVIDIA A100-SXM4-40GB
56
+ ---
57
+ # Aira-2-portuguese-560M
58
+
59
+ Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-portuguese-560M is an instruction-tuned model based on [BLOOM](https://huggingface.co/bigscience/bloom-560m). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
60
+
61
+ Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo-Portuguese).
62
+
63
+ ## Details
64
+
65
+ - **Size:** 559,012,864 parameters
66
+ - **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
67
+ - **Language:** Portuguese
68
+ - **Number of Epochs:** 3
69
+ - **Batch size:** 8
70
+ - **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
71
+ - **GPU:** 1 NVIDIA A100-SXM4-40GB
72
+ - **Emissions:** 0.80 KgCO2 (Singapore)
73
+ - **Total Energy Consumption:** 1.64 kWh
74
+
75
+ This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
76
+
77
+ ## Usage
78
+
79
+ Three special tokens are used to mark the user side of the interaction and the model's response:
80
+
81
+ `<|startofinstruction|>`O que é um modelo de linguagem?`<|endofinstruction|>`Um modelo de linguagem é uma distribuição de probabilidade sobre um vocabulário.`<|endofcompletion|>`
82
+
83
+ ```python
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+ import torch
86
+
87
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+
89
+ tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-portuguese-560M')
90
+ aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-portuguese-560M')
91
+
92
+ aira.eval()
93
+ aira.to(device)
94
+
95
+ question = input("Enter your question: ")
96
+
97
+ inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
98
+ add_special_tokens=False,
99
+ return_tensors="pt").to(device)
100
+
101
+ responses = aira.generate(**inputs, num_return_sequences=2)
102
+
103
+ print(f"Question: 👤 {question}\n")
104
+
105
+ for i, response in enumerate(responses):
106
+ print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
107
+ ```
108
+
109
+ The model will output something like:
110
+
111
+ ```markdown
112
+ >>> Question: 👤 Qual a capital da Alemanha?
113
+
114
+ >>>Response 1: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
115
+ >>>Response 2: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
116
+ ```
117
+
118
+ ## Limitations
119
+
120
+ - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.
121
+
122
+ - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
123
+
124
+ - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
125
+
126
+ ## Cite as 🤗
127
+
128
+ ```latex
129
+ @misc{nicholas22aira,
130
+ doi = {10.5281/zenodo.6989727},
131
+ url = {https://github.com/Nkluge-correa/Aira},
132
+ author = {Nicholas Kluge Corrêa},
133
+ title = {Aira},
134
+ year = {2023},
135
+ publisher = {GitHub},
136
+ journal = {GitHub repository},
137
+ }
138
+
139
+ @phdthesis{kluge2024dynamic,
140
+ title={Dynamic Normativity},
141
+ author={Kluge Corr{\^e}a, Nicholas},
142
+ year={2024},
143
+ school={Universit{\"a}ts-und Landesbibliothek Bonn}
144
+ }
145
+ ```
146
+
147
+ ## License
148
+
149
+ Aira-2-portuguese-560M is licensed under the RAIL License since it is a model derived from BLOOM. See the [LICENSE](LICENSE) file for more details.
150
+