RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
PowerLM-3b - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/ibm/
|
12 |
+
- Original model: https://huggingface.co/ibm/PowerLM-3b/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
inference: false
|
21 |
+
license: apache-2.0
|
22 |
+
library_name: transformers
|
23 |
+
model-index:
|
24 |
+
- name: ibm/PowerLM-3b
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
dataset:
|
29 |
+
type: lm-eval-harness
|
30 |
+
name: ARC
|
31 |
+
metrics:
|
32 |
+
- name: accuracy-norm
|
33 |
+
type: accuracy-norm
|
34 |
+
value: 60.5
|
35 |
+
verified: false
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
type: lm-eval-harness
|
40 |
+
name: BoolQ
|
41 |
+
metrics:
|
42 |
+
- name: accuracy
|
43 |
+
type: accuracy
|
44 |
+
value: 72.0
|
45 |
+
verified: false
|
46 |
+
- task:
|
47 |
+
type: text-generation
|
48 |
+
dataset:
|
49 |
+
type: lm-eval-harness
|
50 |
+
name: Hellaswag
|
51 |
+
metrics:
|
52 |
+
- name: accuracy-norm
|
53 |
+
type: accuracy-norm
|
54 |
+
value: 74.6
|
55 |
+
verified: false
|
56 |
+
- task:
|
57 |
+
type: text-generation
|
58 |
+
dataset:
|
59 |
+
type: lm-eval-harness
|
60 |
+
name: OpenBookQA
|
61 |
+
metrics:
|
62 |
+
- name: accuracy-norm
|
63 |
+
type: accuracy-norm
|
64 |
+
value: 43.6
|
65 |
+
verified: false
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
dataset:
|
69 |
+
type: lm-eval-harness
|
70 |
+
name: PIQA
|
71 |
+
metrics:
|
72 |
+
- name: accuracy-norm
|
73 |
+
type: accuracy-norm
|
74 |
+
value: 79.9
|
75 |
+
verified: false
|
76 |
+
- task:
|
77 |
+
type: text-generation
|
78 |
+
dataset:
|
79 |
+
type: lm-eval-harness
|
80 |
+
name: Winogrande
|
81 |
+
metrics:
|
82 |
+
- name: accuracy-norm
|
83 |
+
type: accuracy-norm
|
84 |
+
value: 70.0
|
85 |
+
verified: false
|
86 |
+
- task:
|
87 |
+
type: text-generation
|
88 |
+
dataset:
|
89 |
+
type: lm-eval-harness
|
90 |
+
name: MMLU (5 shot)
|
91 |
+
metrics:
|
92 |
+
- name: accuracy
|
93 |
+
type: accuracy
|
94 |
+
value: 49.2
|
95 |
+
verified: false
|
96 |
+
- task:
|
97 |
+
type: text-generation
|
98 |
+
dataset:
|
99 |
+
type: lm-eval-harness
|
100 |
+
name: GSM8k (5 shot)
|
101 |
+
metrics:
|
102 |
+
- name: accuracy
|
103 |
+
type: accuracy
|
104 |
+
value: 34.9
|
105 |
+
verified: false
|
106 |
+
- task:
|
107 |
+
type: text-generation
|
108 |
+
dataset:
|
109 |
+
type: lm-eval-harness
|
110 |
+
name: math (4 shot)
|
111 |
+
metrics:
|
112 |
+
- name: accuracy
|
113 |
+
type: accuracy
|
114 |
+
value: 15.2
|
115 |
+
verified: false
|
116 |
+
- task:
|
117 |
+
type: text-generation
|
118 |
+
dataset:
|
119 |
+
type: bigcode-eval
|
120 |
+
name: humaneval
|
121 |
+
metrics:
|
122 |
+
- name: pass@1
|
123 |
+
type: pass@1
|
124 |
+
value: 26.8
|
125 |
+
verified: false
|
126 |
+
- task:
|
127 |
+
type: text-generation
|
128 |
+
dataset:
|
129 |
+
type: bigcode-eval
|
130 |
+
name: MBPP
|
131 |
+
metrics:
|
132 |
+
- name: pass@1
|
133 |
+
type: pass@1
|
134 |
+
value: 33.6
|
135 |
+
verified: false
|
136 |
+
---
|
137 |
+
|
138 |
+
## Model Summary
|
139 |
+
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a mix of open-source and proprietary datasets. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
|
140 |
+
Paper: https://arxiv.org/abs/2408.13359
|
141 |
+
|
142 |
+
## Usage
|
143 |
+
Note: Requires installing HF transformers from source.
|
144 |
+
|
145 |
+
### Generation
|
146 |
+
This is a simple example of how to use **PowerLM-3b** model.
|
147 |
+
|
148 |
+
```python
|
149 |
+
import torch
|
150 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
151 |
+
device = "cuda" # or "cpu"
|
152 |
+
model_path = "ibm/PowerLM-3b"
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
154 |
+
# drop device_map if running on CPU
|
155 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
156 |
+
model.eval()
|
157 |
+
# change input text as desired
|
158 |
+
prompt = "Write a code to find the maximum value in a list of numbers."
|
159 |
+
# tokenize the text
|
160 |
+
input_tokens = tokenizer(prompt, return_tensors="pt")
|
161 |
+
# transfer tokenized inputs to the device
|
162 |
+
for i in input_tokens:
|
163 |
+
input_tokens[i] = input_tokens[i].to(device)
|
164 |
+
# generate output tokens
|
165 |
+
output = model.generate(**input_tokens, max_new_tokens=100)
|
166 |
+
# decode output tokens into text
|
167 |
+
output = tokenizer.batch_decode(output)
|
168 |
+
# loop over the batch to print, in this example the batch size is 1
|
169 |
+
for i in output:
|
170 |
+
print(i)
|
171 |
+
```
|
172 |
+
|