RichardErkhov commited on
Commit
9df1a5e
·
verified ·
1 Parent(s): bd6d6ce

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +373 -0
README.md ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ granite-3.0-2b-instruct - bnb 8bits
11
+ - Model creator: https://huggingface.co/ibm-granite/
12
+ - Original model: https://huggingface.co/ibm-granite/granite-3.0-2b-instruct/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ pipeline_tag: text-generation
20
+ inference: false
21
+ license: apache-2.0
22
+ library_name: transformers
23
+ tags:
24
+ - language
25
+ - granite-3.0
26
+ model-index:
27
+ - name: granite-3.0-2b-instruct
28
+ results:
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ type: instruction-following
33
+ name: IFEval
34
+ metrics:
35
+ - name: pass@1
36
+ type: pass@1
37
+ value: 46.07
38
+ veriefied: false
39
+ - task:
40
+ type: text-generation
41
+ dataset:
42
+ type: instruction-following
43
+ name: MT-Bench
44
+ metrics:
45
+ - name: pass@1
46
+ type: pass@1
47
+ value: 7.66
48
+ veriefied: false
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ type: human-exams
53
+ name: AGI-Eval
54
+ metrics:
55
+ - name: pass@1
56
+ type: pass@1
57
+ value: 29.75
58
+ veriefied: false
59
+ - task:
60
+ type: text-generation
61
+ dataset:
62
+ type: human-exams
63
+ name: MMLU
64
+ metrics:
65
+ - name: pass@1
66
+ type: pass@1
67
+ value: 56.03
68
+ veriefied: false
69
+ - task:
70
+ type: text-generation
71
+ dataset:
72
+ type: human-exams
73
+ name: MMLU-Pro
74
+ metrics:
75
+ - name: pass@1
76
+ type: pass@1
77
+ value: 27.92
78
+ veriefied: false
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ type: commonsense
83
+ name: OBQA
84
+ metrics:
85
+ - name: pass@1
86
+ type: pass@1
87
+ value: 43.2
88
+ veriefied: false
89
+ - task:
90
+ type: text-generation
91
+ dataset:
92
+ type: commonsense
93
+ name: SIQA
94
+ metrics:
95
+ - name: pass@1
96
+ type: pass@1
97
+ value: 66.36
98
+ veriefied: false
99
+ - task:
100
+ type: text-generation
101
+ dataset:
102
+ type: commonsense
103
+ name: Hellaswag
104
+ metrics:
105
+ - name: pass@1
106
+ type: pass@1
107
+ value: 76.79
108
+ veriefied: false
109
+ - task:
110
+ type: text-generation
111
+ dataset:
112
+ type: commonsense
113
+ name: WinoGrande
114
+ metrics:
115
+ - name: pass@1
116
+ type: pass@1
117
+ value: 71.9
118
+ veriefied: false
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ type: commonsense
123
+ name: TruthfulQA
124
+ metrics:
125
+ - name: pass@1
126
+ type: pass@1
127
+ value: 53.37
128
+ veriefied: false
129
+ - task:
130
+ type: text-generation
131
+ dataset:
132
+ type: reading-comprehension
133
+ name: BoolQ
134
+ metrics:
135
+ - name: pass@1
136
+ type: pass@1
137
+ value: 84.89
138
+ veriefied: false
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ type: reading-comprehension
143
+ name: SQuAD 2.0
144
+ metrics:
145
+ - name: pass@1
146
+ type: pass@1
147
+ value: 19.73
148
+ veriefied: false
149
+ - task:
150
+ type: text-generation
151
+ dataset:
152
+ type: reasoning
153
+ name: ARC-C
154
+ metrics:
155
+ - name: pass@1
156
+ type: pass@1
157
+ value: 54.35
158
+ veriefied: false
159
+ - task:
160
+ type: text-generation
161
+ dataset:
162
+ type: reasoning
163
+ name: GPQA
164
+ metrics:
165
+ - name: pass@1
166
+ type: pass@1
167
+ value: 28.61
168
+ veriefied: false
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ type: reasoning
173
+ name: BBH
174
+ metrics:
175
+ - name: pass@1
176
+ type: pass@1
177
+ value: 43.74
178
+ veriefied: false
179
+ - task:
180
+ type: text-generation
181
+ dataset:
182
+ type: code
183
+ name: HumanEvalSynthesis
184
+ metrics:
185
+ - name: pass@1
186
+ type: pass@1
187
+ value: 50.61
188
+ veriefied: false
189
+ - task:
190
+ type: text-generation
191
+ dataset:
192
+ type: code
193
+ name: HumanEvalExplain
194
+ metrics:
195
+ - name: pass@1
196
+ type: pass@1
197
+ value: 45.58
198
+ veriefied: false
199
+ - task:
200
+ type: text-generation
201
+ dataset:
202
+ type: code
203
+ name: HumanEvalFix
204
+ metrics:
205
+ - name: pass@1
206
+ type: pass@1
207
+ value: 51.83
208
+ veriefied: false
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ type: code
213
+ name: MBPP
214
+ metrics:
215
+ - name: pass@1
216
+ type: pass@1
217
+ value: 41
218
+ veriefied: false
219
+ - task:
220
+ type: text-generation
221
+ dataset:
222
+ type: math
223
+ name: GSM8K
224
+ metrics:
225
+ - name: pass@1
226
+ type: pass@1
227
+ value: 59.66
228
+ veriefied: false
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ type: math
233
+ name: MATH
234
+ metrics:
235
+ - name: pass@1
236
+ type: pass@1
237
+ value: 23.66
238
+ veriefied: false
239
+ - task:
240
+ type: text-generation
241
+ dataset:
242
+ type: multilingual
243
+ name: PAWS-X (7 langs)
244
+ metrics:
245
+ - name: pass@1
246
+ type: pass@1
247
+ value: 61.42
248
+ veriefied: false
249
+ - task:
250
+ type: text-generation
251
+ dataset:
252
+ type: multilingual
253
+ name: MGSM (6 langs)
254
+ metrics:
255
+ - name: pass@1
256
+ type: pass@1
257
+ value: 37.13
258
+ veriefied: false
259
+ base_model:
260
+ - ibm-granite/granite-3.0-2b-base
261
+ ---
262
+
263
+ <!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
264
+ <!-- ![image/png](granite-3_0-language-models_Group_1.png) -->
265
+
266
+ # Granite-3.0-2B-Instruct
267
+
268
+ **Model Summary:**
269
+ Granite-3.0-2B-Instruct is a 2B parameter model finetuned from *Granite-3.0-2B-Base* using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
270
+
271
+ - **Developers:** Granite Team, IBM
272
+ - **GitHub Repository:** [ibm-granite/granite-3.0-language-models](https://github.com/ibm-granite/granite-3.0-language-models)
273
+ - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
274
+ - **Paper:** [Granite 3.0 Language Models](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf)
275
+ - **Release Date**: October 21st, 2024
276
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
277
+
278
+ **Supported Languages:**
279
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.
280
+
281
+ **Intended use:**
282
+ The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
283
+
284
+ *Capabilities*
285
+ * Summarization
286
+ * Text classification
287
+ * Text extraction
288
+ * Question-answering
289
+ * Retrieval Augmented Generation (RAG)
290
+ * Code related tasks
291
+ * Function-calling tasks
292
+ * Multilingual dialog use cases
293
+
294
+ **Generation:**
295
+ This is a simple example of how to use Granite-3.0-2B-Instruct model.
296
+
297
+ Install the following libraries:
298
+
299
+ ```shell
300
+ pip install torch torchvision torchaudio
301
+ pip install accelerate
302
+ pip install transformers
303
+ ```
304
+ Then, copy the snippet from the section that is relevant for your use case.
305
+
306
+ ```python
307
+ import torch
308
+ from transformers import AutoModelForCausalLM, AutoTokenizer
309
+
310
+ device = "auto"
311
+ model_path = "ibm-granite/granite-3.0-2b-instruct"
312
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
313
+ # drop device_map if running on CPU
314
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
315
+ model.eval()
316
+ # change input text as desired
317
+ chat = [
318
+ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
319
+ ]
320
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
321
+ # tokenize the text
322
+ input_tokens = tokenizer(chat, return_tensors="pt").to(device)
323
+ # generate output tokens
324
+ output = model.generate(**input_tokens,
325
+ max_new_tokens=100)
326
+ # decode output tokens into text
327
+ output = tokenizer.batch_decode(output)
328
+ # print output
329
+ print(output)
330
+ ```
331
+
332
+ **Model Architecture:**
333
+ Granite-3.0-2B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.
334
+
335
+ | Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
336
+ | :-------- | :-------- | :--------| :--------| :--------|
337
+ | Embedding size | **2048** | 4096 | 1024 | 1536 |
338
+ | Number of layers | **40** | 40 | 24 | 32 |
339
+ | Attention head size | **64** | 128 | 64 | 64 |
340
+ | Number of attention heads | **32** | 32 | 16 | 24 |
341
+ | Number of KV heads | **8** | 8 | 8 | 8 |
342
+ | MLP hidden size | **8192** | 12800 | 512 | 512 |
343
+ | MLP activation | **SwiGLU** | SwiGLU | SwiGLU | SwiGLU |
344
+ | Number of Experts | **—** | — | 32 | 40 |
345
+ | MoE TopK | **—** | — | 8 | 8 |
346
+ | Initialization std | **0.1** | 0.1 | 0.1 | 0.1 |
347
+ | Sequence Length | **4096** | 4096 | 4096 | 4096 |
348
+ | Position Embedding | **RoPE** | RoPE | RoPE | RoPE |
349
+ | # Parameters | **2.5B** | 8.1B | 1.3B | 3.3B |
350
+ | # Active Parameters | **2.5B** | 8.1B | 400M | 800M |
351
+ | # Training tokens | **12T** | 12T | 10T | 10T |
352
+
353
+ **Training Data:**
354
+ Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf) and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
355
+
356
+ **Infrastructure:**
357
+ We train Granite 3.0 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs while minimizing environmental impact by utilizing 100% renewable energy sources.
358
+
359
+ **Ethical Considerations and Limitations:**
360
+ Granite 3.0 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.
361
+
362
+ <!-- ## Citation
363
+ ```
364
+ @misc{granite-models,
365
+ author = {author 1, author2, ...},
366
+ title = {},
367
+ journal = {},
368
+ volume = {},
369
+ year = {2024},
370
+ url = {https://arxiv.org/abs/0000.00000},
371
+ }
372
+ ``` -->
373
+