RichardErkhov commited on
Commit
7f58696
·
verified ·
1 Parent(s): a036dbd

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ opt_2.7b_wiki_ce - bnb 4bits
11
+ - Model creator: https://huggingface.co/ellen625/
12
+ - Original model: https://huggingface.co/ellen625/opt_2.7b_wiki_ce/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ tags:
21
+ - generated_from_trainer
22
+ base_model: facebook/opt-1.3b
23
+ model-index:
24
+ - name: opt_2.7b_wiki_ce
25
+ results: []
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # opt_2.7b_wiki_ce
32
+
33
+ This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.4190
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 4
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 8
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 1
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss |
69
+ |:-------------:|:------:|:----:|:---------------:|
70
+ | 2.6033 | 0.4354 | 500 | 2.4562 |
71
+ | 2.5267 | 0.8707 | 1000 | 2.4247 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.40.2
77
+ - Pytorch 2.2.2
78
+ - Datasets 2.19.1
79
+ - Tokenizers 0.19.1
80
+
81
+