RichardErkhov commited on
Commit
30856bc
·
verified ·
1 Parent(s): e8364b9

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ bloom-560m-RLHF-SD2-prompter-aesthetic - bnb 4bits
11
+ - Model creator: https://huggingface.co/crumb/
12
+ - Original model: https://huggingface.co/crumb/bloom-560m-RLHF-SD2-prompter-aesthetic/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: bigscience-bloom-rail-1.0
20
+ tags:
21
+ - stable-diffusion
22
+ - diffusion
23
+ model-index:
24
+ - name: bloom-560m-RLHF-SD2-prompter
25
+ results: []
26
+
27
+ datasets:
28
+ - Gustavosta/Stable-Diffusion-Prompts
29
+
30
+ widget:
31
+ - text: "<s>Prompt: "
32
+
33
+ inference:
34
+ parameters:
35
+ eos_token_id: 2
36
+ max_length: 128
37
+ do_sample: true
38
+ ---
39
+
40
+ # The RAT (RLHF-Aesthetic Tuned model for prompt synthesis)
41
+
42
+ **COLAB DEMO INCLUDING STABLE DIFFUSION: https://colab.research.google.com/github/aicrumb/doohickey/blob/main/rlhf_prompt_tuner.ipynb**
43
+
44
+ This is a further finetuned version of [crumb/bloom-560m-RLHF-SD2-prompter](https://hf.co/crumb/bloom-560m-RLHF-SD2-prompter) to optimize for aesthetic score with models from https://github.com/crowsonkb/simulacra-aesthetic-models instead of me hand scoring each image
45
+
46
+ donate so i can do this on real hardware : https://github.com/aicrumb/aicrumb/blob/main/README.md
47
+
48
+ trained at bs=32, lr=0.0001, only tuning biases and layernorm weights
49
+
50
+ ## Example usage
51
+
52
+ ```python
53
+ # Install libraries needed to run the models
54
+ !pip install transformers diffusers accelerate -qq
55
+
56
+ # Import the libraries
57
+ from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
58
+ from transformers import pipeline
59
+ import torch
60
+
61
+ # This is the model that the transformer was finetuned to generate prompts for
62
+ model_id = "stabilityai/stable-diffusion-2-base"
63
+
64
+ # Use the Euler scheduler here
65
+ scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
66
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
67
+ pipe = pipe.to("cuda")
68
+
69
+ # Load the transformer model
70
+ prompt_pipe = pipeline("text-generation", model="crumb/bloom-560m-RLHF-SD2-prompter-aesthetic")
71
+ prompt = "cool landscape"
72
+
73
+ # Auto-complete prompt
74
+ prompt = "<s>Prompt: " + prompt + ","
75
+ extended_prompt = prompt_pipe(prompt, do_sample=True, max_length=42)[0]['generated_text']
76
+ extended_prompt = extended_prompt[10:]
77
+ print("Prompt is now: ", extended_prompt)
78
+
79
+ # Generate image
80
+ image = pipe(extended_prompt).images[0]
81
+
82
+ image.save("output.png")
83
+ image
84
+ ```
85
+
86
+ ## Limitations
87
+ Aesthetic scoring models have been shown to have very large biases, and one I noticed is it really likes images of women no matter the actual quality, so those were optimized for more than other things.
88
+
89
+ Also it fell into the trap of rlhf models, it gets kinda same-ey, so if you don't like the general "stable diffusion, trending on artstation" look this might not be for you.
90
+