File size: 5,773 Bytes
e6b057a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


gemma-2-27b-it-abliterated - GGUF
- Model creator: https://huggingface.co/byroneverson/
- Original model: https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [gemma-2-27b-it-abliterated.Q2_K.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q2_K.gguf) | Q2_K | 9.73GB |
| [gemma-2-27b-it-abliterated.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.IQ3_XS.gguf) | IQ3_XS | 10.76GB |
| [gemma-2-27b-it-abliterated.IQ3_S.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.IQ3_S.gguf) | IQ3_S | 11.33GB |
| [gemma-2-27b-it-abliterated.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q3_K_S.gguf) | Q3_K_S | 11.33GB |
| [gemma-2-27b-it-abliterated.IQ3_M.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.IQ3_M.gguf) | IQ3_M | 11.6GB |
| [gemma-2-27b-it-abliterated.Q3_K.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q3_K.gguf) | Q3_K | 12.5GB |
| [gemma-2-27b-it-abliterated.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q3_K_M.gguf) | Q3_K_M | 12.5GB |
| [gemma-2-27b-it-abliterated.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q3_K_L.gguf) | Q3_K_L | 13.52GB |
| [gemma-2-27b-it-abliterated.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.IQ4_XS.gguf) | IQ4_XS | 13.92GB |
| [gemma-2-27b-it-abliterated.Q4_0.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q4_0.gguf) | Q4_0 | 14.56GB |
| [gemma-2-27b-it-abliterated.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.IQ4_NL.gguf) | IQ4_NL | 14.65GB |
| [gemma-2-27b-it-abliterated.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q4_K_S.gguf) | Q4_K_S | 14.66GB |
| [gemma-2-27b-it-abliterated.Q4_K.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q4_K.gguf) | Q4_K | 15.5GB |
| [gemma-2-27b-it-abliterated.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q4_K_M.gguf) | Q4_K_M | 15.5GB |
| [gemma-2-27b-it-abliterated.Q4_1.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q4_1.gguf) | Q4_1 | 16.07GB |
| [gemma-2-27b-it-abliterated.Q5_0.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q5_0.gguf) | Q5_0 | 17.59GB |
| [gemma-2-27b-it-abliterated.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q5_K_S.gguf) | Q5_K_S | 17.59GB |
| [gemma-2-27b-it-abliterated.Q5_K.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q5_K.gguf) | Q5_K | 18.08GB |
| [gemma-2-27b-it-abliterated.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q5_K_M.gguf) | Q5_K_M | 18.08GB |
| [gemma-2-27b-it-abliterated.Q5_1.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q5_1.gguf) | Q5_1 | 19.1GB |
| [gemma-2-27b-it-abliterated.Q6_K.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q6_K.gguf) | Q6_K | 20.81GB |
| [gemma-2-27b-it-abliterated.Q8_0.gguf](https://huggingface.co/RichardErkhov/byroneverson_-_gemma-2-27b-it-abliterated-gguf/blob/main/gemma-2-27b-it-abliterated.Q8_0.gguf) | Q8_0 | 26.95GB |




Original model description:
---
base_model: google/gemma-2-27b-it
pipeline_tag: text-generation
license: gemma
language:
- en
tags:
- gemma
- gemma-2
- chat
- it
- abliterated
library_name: transformers
---



# gemma-2-27b-it-abliterated

## Now accepting abliteration requests. If you would like to see a model abliterated, follow me and leave me a message with model link.

This is a new approach for abliterating models using CPU only. I was able to abliterate this model using free kaggle processing with no accelerator.
1. Obtain refusal direction vector using a quant model with llama.cpp (llama-cpp-python and ggml-python).
2. Orthogonalize each .safetensors files directly from original repo and upload to a new repo. (one at a time)

Check out the <a href="https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated/blob/main/abliterate-gemma-2-27b-it.ipynb">jupyter notebook</a> for details of how this model was abliterated from gemma-2-27b-it.

![Logo](https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated/resolve/main/logo.png "Logo")