RichardErkhov commited on
Commit
5320de9
•
1 Parent(s): 1a3b81a

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +145 -0
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ code-millenials-13b - GGUF
11
+ - Model creator: https://huggingface.co/budecosystem/
12
+ - Original model: https://huggingface.co/budecosystem/code-millenials-13b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [code-millenials-13b.Q2_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q2_K.gguf) | Q2_K | 4.52GB |
18
+ | [code-millenials-13b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
19
+ | [code-millenials-13b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_S.gguf) | IQ3_S | 5.27GB |
20
+ | [code-millenials-13b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
21
+ | [code-millenials-13b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_M.gguf) | IQ3_M | 5.57GB |
22
+ | [code-millenials-13b.Q3_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K.gguf) | Q3_K | 5.9GB |
23
+ | [code-millenials-13b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
24
+ | [code-millenials-13b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
25
+ | [code-millenials-13b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
26
+ | [code-millenials-13b.Q4_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_0.gguf) | Q4_0 | 6.86GB |
27
+ | [code-millenials-13b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
28
+ | [code-millenials-13b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
29
+ | [code-millenials-13b.Q4_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K.gguf) | Q4_K | 7.33GB |
30
+ | [code-millenials-13b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
31
+ | [code-millenials-13b.Q4_1.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_1.gguf) | Q4_1 | 7.61GB |
32
+ | [code-millenials-13b.Q5_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_0.gguf) | Q5_0 | 8.36GB |
33
+ | [code-millenials-13b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
34
+ | [code-millenials-13b.Q5_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K.gguf) | Q5_K | 8.6GB |
35
+ | [code-millenials-13b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
36
+ | [code-millenials-13b.Q5_1.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_1.gguf) | Q5_1 | 9.1GB |
37
+ | [code-millenials-13b.Q6_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q6_K.gguf) | Q6_K | 9.95GB |
38
+ | [code-millenials-13b.Q8_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q8_0.gguf) | Q8_0 | 12.88GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: llama2
46
+ library_name: transformers
47
+ tags:
48
+ - code
49
+ model-index:
50
+ - name: Code Millenials
51
+ results:
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ type: openai_humaneval
56
+ name: HumanEval
57
+ metrics:
58
+ - name: pass@1
59
+ type: pass@1
60
+ value: 0.7621
61
+ verified: false
62
+ ---
63
+
64
+
65
+ # Bud Code Millenials 13B
66
+
67
+ Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to [email protected]
68
+ ### News 🔥🔥🔥
69
+
70
+ - [2024/01/09] We released **Code Millenials 3B** , which achieves the **56.09 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
71
+ - [2024/01/09] We released **Code Millenials 1B** , which achieves the **51.82 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
72
+ - [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
73
+ - [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
74
+
75
+
76
+ ### HumanEval
77
+
78
+ <p align="center" width="100%">
79
+ <a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
80
+ </p>
81
+
82
+ For the millenial models, the eval script in the github repo is used for the above result.
83
+
84
+ Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc.
85
+
86
+
87
+ ### Models
88
+
89
+ | Model | Checkpoint | HumanEval (+) | MBPP (+) |
90
+ |---------|-------------|---------------|----------|
91
+ |Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) |
92
+ |Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) |
93
+ |Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | 56.09 (52.43) | 55.13 (47.11) |
94
+ |Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | 51.82 (48.17) | 53.13 (44.61) |
95
+
96
+
97
+
98
+
99
+ ### 🚀 Quick Start
100
+
101
+ Inference code using the pre-trained model from the Hugging Face model hub
102
+
103
+ ```python
104
+ import torch
105
+ from transformers import AutoTokenizer, AutoModelForCausalLM
106
+
107
+ tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-13b")
108
+ model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-13b")
109
+
110
+ template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
111
+ ### Instruction: {instruction} ### Response:"""
112
+
113
+ instruction = <Your code instruction here>
114
+
115
+ prompt = template.format(instruction=instruction)
116
+
117
+ inputs = tokenizer(prompt, return_tensors="pt")
118
+ sample = model.generate(**inputs, max_length=128)
119
+ print(tokenizer.decode(sample[0]))
120
+
121
+ ```
122
+
123
+
124
+ ## Training details
125
+
126
+ The model is trained of 8 A100 80GB for approximately 15hrs.
127
+
128
+ | Hyperparameters | Value |
129
+ | :----------------------------| :-----: |
130
+ | per_device_train_batch_size | 2 |
131
+ | gradient_accumulation_steps | 1 |
132
+ | epoch | 3 |
133
+ | steps | 34503 |
134
+ | learning_rate | 2e-5 |
135
+ | lr schedular type | cosine |
136
+ | warmup ratio | 0.1 |
137
+ | optimizer | adamw |
138
+ | fp16 | True |
139
+ | GPU | 8 A100 80GB |
140
+
141
+ ### Important Note
142
+
143
+ - **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.
144
+
145
+