RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
code-millenials-13b - GGUF
|
11 |
+
- Model creator: https://huggingface.co/budecosystem/
|
12 |
+
- Original model: https://huggingface.co/budecosystem/code-millenials-13b/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [code-millenials-13b.Q2_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q2_K.gguf) | Q2_K | 4.52GB |
|
18 |
+
| [code-millenials-13b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
|
19 |
+
| [code-millenials-13b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_S.gguf) | IQ3_S | 5.27GB |
|
20 |
+
| [code-millenials-13b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
|
21 |
+
| [code-millenials-13b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ3_M.gguf) | IQ3_M | 5.57GB |
|
22 |
+
| [code-millenials-13b.Q3_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K.gguf) | Q3_K | 5.9GB |
|
23 |
+
| [code-millenials-13b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
|
24 |
+
| [code-millenials-13b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
|
25 |
+
| [code-millenials-13b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
|
26 |
+
| [code-millenials-13b.Q4_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_0.gguf) | Q4_0 | 6.86GB |
|
27 |
+
| [code-millenials-13b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
|
28 |
+
| [code-millenials-13b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
|
29 |
+
| [code-millenials-13b.Q4_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K.gguf) | Q4_K | 7.33GB |
|
30 |
+
| [code-millenials-13b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
|
31 |
+
| [code-millenials-13b.Q4_1.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q4_1.gguf) | Q4_1 | 7.61GB |
|
32 |
+
| [code-millenials-13b.Q5_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_0.gguf) | Q5_0 | 8.36GB |
|
33 |
+
| [code-millenials-13b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
|
34 |
+
| [code-millenials-13b.Q5_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K.gguf) | Q5_K | 8.6GB |
|
35 |
+
| [code-millenials-13b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
|
36 |
+
| [code-millenials-13b.Q5_1.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q5_1.gguf) | Q5_1 | 9.1GB |
|
37 |
+
| [code-millenials-13b.Q6_K.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q6_K.gguf) | Q6_K | 9.95GB |
|
38 |
+
| [code-millenials-13b.Q8_0.gguf](https://huggingface.co/RichardErkhov/budecosystem_-_code-millenials-13b-gguf/blob/main/code-millenials-13b.Q8_0.gguf) | Q8_0 | 12.88GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: llama2
|
46 |
+
library_name: transformers
|
47 |
+
tags:
|
48 |
+
- code
|
49 |
+
model-index:
|
50 |
+
- name: Code Millenials
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: text-generation
|
54 |
+
dataset:
|
55 |
+
type: openai_humaneval
|
56 |
+
name: HumanEval
|
57 |
+
metrics:
|
58 |
+
- name: pass@1
|
59 |
+
type: pass@1
|
60 |
+
value: 0.7621
|
61 |
+
verified: false
|
62 |
+
---
|
63 |
+
|
64 |
+
|
65 |
+
# Bud Code Millenials 13B
|
66 |
+
|
67 |
+
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to [email protected]
|
68 |
+
### News 🔥🔥🔥
|
69 |
+
|
70 |
+
- [2024/01/09] We released **Code Millenials 3B** , which achieves the **56.09 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
71 |
+
- [2024/01/09] We released **Code Millenials 1B** , which achieves the **51.82 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
72 |
+
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
73 |
+
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
74 |
+
|
75 |
+
|
76 |
+
### HumanEval
|
77 |
+
|
78 |
+
<p align="center" width="100%">
|
79 |
+
<a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
80 |
+
</p>
|
81 |
+
|
82 |
+
For the millenial models, the eval script in the github repo is used for the above result.
|
83 |
+
|
84 |
+
Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc.
|
85 |
+
|
86 |
+
|
87 |
+
### Models
|
88 |
+
|
89 |
+
| Model | Checkpoint | HumanEval (+) | MBPP (+) |
|
90 |
+
|---------|-------------|---------------|----------|
|
91 |
+
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) |
|
92 |
+
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) |
|
93 |
+
|Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | 56.09 (52.43) | 55.13 (47.11) |
|
94 |
+
|Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | 51.82 (48.17) | 53.13 (44.61) |
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
### 🚀 Quick Start
|
100 |
+
|
101 |
+
Inference code using the pre-trained model from the Hugging Face model hub
|
102 |
+
|
103 |
+
```python
|
104 |
+
import torch
|
105 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
106 |
+
|
107 |
+
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-13b")
|
108 |
+
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-13b")
|
109 |
+
|
110 |
+
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
111 |
+
### Instruction: {instruction} ### Response:"""
|
112 |
+
|
113 |
+
instruction = <Your code instruction here>
|
114 |
+
|
115 |
+
prompt = template.format(instruction=instruction)
|
116 |
+
|
117 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
118 |
+
sample = model.generate(**inputs, max_length=128)
|
119 |
+
print(tokenizer.decode(sample[0]))
|
120 |
+
|
121 |
+
```
|
122 |
+
|
123 |
+
|
124 |
+
## Training details
|
125 |
+
|
126 |
+
The model is trained of 8 A100 80GB for approximately 15hrs.
|
127 |
+
|
128 |
+
| Hyperparameters | Value |
|
129 |
+
| :----------------------------| :-----: |
|
130 |
+
| per_device_train_batch_size | 2 |
|
131 |
+
| gradient_accumulation_steps | 1 |
|
132 |
+
| epoch | 3 |
|
133 |
+
| steps | 34503 |
|
134 |
+
| learning_rate | 2e-5 |
|
135 |
+
| lr schedular type | cosine |
|
136 |
+
| warmup ratio | 0.1 |
|
137 |
+
| optimizer | adamw |
|
138 |
+
| fp16 | True |
|
139 |
+
| GPU | 8 A100 80GB |
|
140 |
+
|
141 |
+
### Important Note
|
142 |
+
|
143 |
+
- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.
|
144 |
+
|
145 |
+
|