RichardErkhov commited on
Commit
adb5b72
·
verified ·
1 Parent(s): fa720ac

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ facebook-opt-350m-imdb - AWQ
11
+ - Model creator: https://huggingface.co/asoria/
12
+ - Original model: https://huggingface.co/asoria/facebook-opt-350m-imdb/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ library_name: transformers
20
+ license: other
21
+ base_model: facebook/opt-350m
22
+ tags:
23
+ - trl
24
+ - sft
25
+ - generated_from_trainer
26
+ model-index:
27
+ - name: outputs
28
+ results: []
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # outputs
35
+
36
+ This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset.
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 1
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 4
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - training_steps: 100
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.44.2
73
+ - Pytorch 2.4.0+cu121
74
+ - Datasets 3.0.0
75
+ - Tokenizers 0.19.1
76
+
77
+