RichardErkhov commited on
Commit
93655f2
·
verified ·
1 Parent(s): d94ab5d

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ pai-bloom-1b1-text2prompt-sd - bnb 4bits
11
+ - Model creator: https://huggingface.co/alibaba-pai/
12
+ - Original model: https://huggingface.co/alibaba-pai/pai-bloom-1b1-text2prompt-sd/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: apache-2.0
20
+ widget:
21
+ - text: "Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: 1 girl\nOutput:"
22
+ tags:
23
+ - pytorch
24
+ - transformers
25
+ - text-generation
26
+ ---
27
+
28
+ # BeautifulPrompt
29
+
30
+ ## 简介 Brief Introduction
31
+
32
+ 我们开源了一个自动Prompt生成模型,您可以直接输入一个极其简单的Prompt,就可以得到经过语言模型优化过的Prompt,帮助您更简单地生成高颜值图像。
33
+
34
+ We release an automatic Prompt generation model, you can directly enter an extremely simple Prompt and get a Prompt optimized by the language model to help you generate more beautiful images simply.
35
+
36
+ * Github: [EasyNLP](https://github.com/alibaba/EasyNLP)
37
+
38
+ ## 使用 Usage
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd')
44
+ model = AutoModelForCausalLM.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd').eval().cuda()
45
+
46
+ raw_prompt = '1 girl'
47
+ input = f'Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: {raw_prompt}\nOutput:'
48
+ input_ids = tokenizer.encode(input, return_tensors='pt').cuda()
49
+
50
+ outputs = model.generate(
51
+ input_ids,
52
+ max_length=384,
53
+ do_sample=True,
54
+ temperature=1.0,
55
+ top_k=50,
56
+ top_p=0.95,
57
+ repetition_penalty=1.2,
58
+ num_return_sequences=5)
59
+
60
+ prompts = tokenizer.batch_decode(outputs[:, input_ids.size(1):], skip_special_tokens=True)
61
+ prompts = [p.strip() for p in prompts]
62
+ print(prompts)
63
+ ```
64
+
65
+ ## 作品展示 Gallery
66
+
67
+ <style>
68
+ table th:first-of-type {
69
+ width: 50%;
70
+ }
71
+ table th:nth-of-type(2) {
72
+ width: 50%;
73
+ }
74
+ </style>
75
+
76
+ | Original | BeautifulPrompt |
77
+ | ---------------------------------------- | ---------------------------------- |
78
+ | prompt: taylor swift, country, golden, fearless,wavehair | prompt: portrait of taylor swift as a beautiful woman, long hair, country, golden ratio, intricate, symmetrical, cinematic lighting, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration |
79
+ | ![](example1.png) | ![](example2.png) |
80
+
81
+
82
+ | Original | BeautifulPrompt |
83
+ | ---------------------------------------- | ---------------------------------- |
84
+ | prompt: A majestic sailing ship | prompt: a massive sailing ship, epic, cinematic, artstation, greg rutkowski, james gurney, sparth |
85
+ | ![](example3.png) | ![](example4.png) |
86
+
87
+
88
+
89
+ ## 使用须知 Notice for Use
90
+
91
+ 使用上述模型需遵守[AIGC模型开源特别条款](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html)。
92
+
93
+ If you want to use this model, please read this [document](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html) carefully and abide by the terms.
94
+
95
+ ## Paper Citation
96
+
97
+ If you find the model useful, please consider cite the paper:
98
+
99
+ ```
100
+ @inproceedings{emnlp2023a,
101
+ author = {Tingfeng Cao and
102
+ Chengyu Wang and
103
+ Bingyan Liu and
104
+ Ziheng Wu and
105
+ Jinhui Zhu and
106
+ Jun Huang},
107
+ title = {BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image Synthesis},
108
+ booktitle = {Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track},
109
+ pages = {1--11},
110
+ year = {2023}
111
+ }
112
+ ```
113
+
114
+
115
+
116
+
117
+