File size: 11,980 Bytes
419e1a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


Smaug-Llama-3-70B-Instruct-32K - GGUF
- Model creator: https://huggingface.co/abacusai/
- Original model: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct-32K/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Smaug-Llama-3-70B-Instruct-32K.Q2_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q2_K.gguf) | Q2_K | 24.56GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_S.gguf) | IQ3_S | 28.79GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_M.gguf) | IQ3_M | 29.74GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K.gguf) | Q3_K | 31.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q4_0.gguf) | Q4_0 | 37.22GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | IQ4_NL | 37.58GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K_S | 37.58GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K | 39.6GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K_M | 39.6GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_1.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_1 | 41.27GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_0 | 45.32GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K_S | 45.32GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K | 46.52GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K_M | 46.52GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_1.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_1 | 49.36GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q6_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q6_K | 53.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q8_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q8_0 | 69.83GB |




Original model description:
---
license: llama3
library_name: transformers
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
model-index:
- name: Smaug-Llama-3-70B-Instruct-32K
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 77.61
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.07
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 21.22
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.15
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.43
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 41.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
      name: Open LLM Leaderboard
---

# Smaug-Llama-3-70B-Instruct-32K

### Built with Meta Llama 3

This is a 32K version of Smaug-Llama-3-70B-Instruct. It uses PoSE (https://arxiv.org/abs/2309.10400) and LoRA (https://arxiv.org/abs/2106.09685) adapter transfer. More details are coming soon.

Needle-In-A-Haystack (https://github.com/jzhang38/EasyContext) heatmap:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/8Z5XgqrZXKcb2hmeTKTT6.png)

### Model Description

- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

## How to use

The prompt format is unchanged from Llama 3 70B Instruct.

### Use with transformers

See the snippet below for usage with Transformers:

```python
import transformers
import torch

model_id = "abacusai/Smaug-Llama-3-70B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
		messages, 
		tokenize=False, 
		add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```


## Evaluation

### Arena-Hard

### Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| **Smaug-Llama-3-70B-Instruct-32K** | 60.0  | (-2.6, 2.1)  | 844 |
| Smaug-Llama-3-70B-Instruct | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

Note that we believe the number of tokens/verbosity of the model strongly influences the GPT-4 judge in this case, and at least partially explains the improvement in Arena-Hard score for the 32K model.

### OpenLLM Leaderboard Manual Evaluation

| Model | ARC  | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
| :---- | ---: | ------:   | ---: | ---:       | ---:       | ---:   | ---:   |
| Smaug-Llama-3-70B-Instruct-32K | 70.1 | TBA | TBA | 61.9 | 82.2 | TBA | TBA |
| Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |

**GSM8K** The GSM8K numbers quoted here are computed using a recent release
of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
The commit used by the leaderboard has a significant issue that impacts models that
tend to use `:` in their responses due to a bug in the stop word configuration for
GSM8K. The issue is covered in more detail in this
[GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
The score for both Llama-3 and this model are significantly different when evaluated
with the updated harness as the issue with stop words has been addressed.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Llama-3-70B-Instruct-32K)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |34.72|
|IFEval (0-Shot)    |77.61|
|BBH (3-Shot)       |49.07|
|MATH Lvl 5 (4-Shot)|21.22|
|GPQA (0-shot)      | 6.15|
|MuSR (0-shot)      |12.43|
|MMLU-PRO (5-shot)  |41.83|