File size: 11,980 Bytes
419e1a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Smaug-Llama-3-70B-Instruct-32K - GGUF
- Model creator: https://huggingface.co/abacusai/
- Original model: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct-32K/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Smaug-Llama-3-70B-Instruct-32K.Q2_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q2_K.gguf) | Q2_K | 24.56GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_S.gguf) | IQ3_S | 28.79GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ3_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ3_M.gguf) | IQ3_M | 29.74GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K.gguf) | Q3_K | 31.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/blob/main/Smaug-Llama-3-70B-Instruct-32K.Q4_0.gguf) | Q4_0 | 37.22GB |
| [Smaug-Llama-3-70B-Instruct-32K.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | IQ4_NL | 37.58GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K_S | 37.58GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K | 39.6GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_K_M | 39.6GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q4_1.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q4_1 | 41.27GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_0 | 45.32GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K_S | 45.32GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K | 46.52GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_K_M | 46.52GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q5_1.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q5_1 | 49.36GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q6_K.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q6_K | 53.91GB |
| [Smaug-Llama-3-70B-Instruct-32K.Q8_0.gguf](https://huggingface.co/RichardErkhov/abacusai_-_Smaug-Llama-3-70B-Instruct-32K-gguf/tree/main/) | Q8_0 | 69.83GB |
Original model description:
---
license: llama3
library_name: transformers
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
model-index:
- name: Smaug-Llama-3-70B-Instruct-32K
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.61
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 21.22
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.43
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.83
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
name: Open LLM Leaderboard
---
# Smaug-Llama-3-70B-Instruct-32K
### Built with Meta Llama 3
This is a 32K version of Smaug-Llama-3-70B-Instruct. It uses PoSE (https://arxiv.org/abs/2309.10400) and LoRA (https://arxiv.org/abs/2106.09685) adapter transfer. More details are coming soon.
Needle-In-A-Haystack (https://github.com/jzhang38/EasyContext) heatmap:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/8Z5XgqrZXKcb2hmeTKTT6.png)
### Model Description
- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).
## How to use
The prompt format is unchanged from Llama 3 70B Instruct.
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "abacusai/Smaug-Llama-3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## Evaluation
### Arena-Hard
### Arena-Hard
Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology.
| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 |
| GPT-4o | 78.3 | (-2.4, 2.1) | 685 |
| Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 |
| Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 |
| **Smaug-Llama-3-70B-Instruct-32K** | 60.0 | (-2.6, 2.1) | 844 |
| Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 |
| GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 |
| Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 |
| Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 |
| GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 |
| Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 |
Note that we believe the number of tokens/verbosity of the model strongly influences the GPT-4 judge in this case, and at least partially explains the improvement in Arena-Hard score for the 32K model.
### OpenLLM Leaderboard Manual Evaluation
| Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
| :---- | ---: | ------: | ---: | ---: | ---: | ---: | ---: |
| Smaug-Llama-3-70B-Instruct-32K | 70.1 | TBA | TBA | 61.9 | 82.2 | TBA | TBA |
| Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |
**GSM8K** The GSM8K numbers quoted here are computed using a recent release
of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
The commit used by the leaderboard has a significant issue that impacts models that
tend to use `:` in their responses due to a bug in the stop word configuration for
GSM8K. The issue is covered in more detail in this
[GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
The score for both Llama-3 and this model are significantly different when evaluated
with the updated harness as the issue with stop words has been addressed.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Llama-3-70B-Instruct-32K)
| Metric |Value|
|-------------------|----:|
|Avg. |34.72|
|IFEval (0-Shot) |77.61|
|BBH (3-Shot) |49.07|
|MATH Lvl 5 (4-Shot)|21.22|
|GPQA (0-shot) | 6.15|
|MuSR (0-shot) |12.43|
|MMLU-PRO (5-shot) |41.83|
|