RichardErkhov
commited on
Commit
•
1686e90
1
Parent(s):
c8a07ef
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Tongda1-1.5B-BKI - AWQ
|
11 |
+
- Model creator: https://huggingface.co/Tongda/
|
12 |
+
- Original model: https://huggingface.co/Tongda/Tongda1-1.5B-BKI/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: apache-2.0
|
20 |
+
datasets:
|
21 |
+
- Tongda/bid-announcement-zh-v1.0
|
22 |
+
base_model:
|
23 |
+
- Qwen/Qwen2-1.5B-Instruct
|
24 |
+
pipeline_tag: text-generation
|
25 |
+
tags:
|
26 |
+
- text-generation-inference
|
27 |
+
library_name: transformers
|
28 |
+
---
|
29 |
+
|
30 |
+
|
31 |
+
## **Model Overview**
|
32 |
+
|
33 |
+
This model is a fine-tuned version of the Qwen2-1.5-Instruct using Low-Rank Adaptation (LoRA). It is specifically designed for extracting key information from bidding and bid-winning announcements. The model focuses on identifying structured data such as project names, announcement types, budget amounts, and deadlines in various formats of bidding notices.
|
34 |
+
|
35 |
+
The base model, Qwen2-1.5-Instruct, is a large-scale language model optimized for instruction-following tasks, and this fine-tuned version leverages its capabilities for precise data extraction tasks in Chinese bid announcement contexts.
|
36 |
+
|
37 |
+
---
|
38 |
+
|
39 |
+
## **Use Cases**
|
40 |
+
|
41 |
+
The model can be used in applications that require the automatic extraction of structured data from text documents, particularly related to government bidding and procurement processes. For instance, based on [the sample announcement](https://www.qhggzyjy.gov.cn/ggzy/jyxx/001002/001002001/20240827/1358880795267533.html), the generated output is as follows:
|
42 |
+
|
43 |
+
```
|
44 |
+
项目名称:"大通县公安局警用无人自动化机场项目"
|
45 |
+
公告类型:"采购公告-竞磋"
|
46 |
+
行业分类:"其他"
|
47 |
+
发布时间:"2024-08-27"
|
48 |
+
预算金额:"941500.00元"
|
49 |
+
采购人:"大通县公安局(本级)"
|
50 |
+
响应文件截至提交时间:"2024-09-10 09:00"
|
51 |
+
开标地址:"大通县政府采购服务中心"
|
52 |
+
所在地区:"青海省"
|
53 |
+
```
|
54 |
+
---
|
55 |
+
|
56 |
+
## **Key Features**
|
57 |
+
|
58 |
+
1. **Fine-tuned with LoRA**: The model has been adapted using LoRA, a parameter-efficient fine-tuning method, allowing it to focus on specific tasks while maintaining the power of the large base model.
|
59 |
+
|
60 |
+
2. **Robust Information Extraction**: The model is trained to extract and validate crucial fields, including budget values, submission deadlines, and industry classifications, ensuring accurate outputs even when encountering variable formats.
|
61 |
+
|
62 |
+
3. **Language & Domain Specificity**: The model excels in parsing official bidding announcements in Chinese and accurately extracting the required information for downstream processes.
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
## **Model Architecture**
|
67 |
+
|
68 |
+
- **Base Model**: Qwen2-1.5B-Instruct
|
69 |
+
- **Fine-Tuning Technique**: LoRA
|
70 |
+
- **Training Data**: Fine-tuned on structured and unstructured government bidding announcements
|
71 |
+
- **Framework**: Hugging Face Transformers & PEFT (Parameter Efficient Fine Tuning)
|
72 |
+
|
73 |
+
## **Technical Specifications**
|
74 |
+
|
75 |
+
- **Device Compatibility**: CUDA (GPU-enabled)
|
76 |
+
- **Tokenization**: Utilizes `AutoTokenizer` from Hugging Face, optimized for instruction-following tasks.
|
77 |
+
|
78 |
+
## **Requirements**
|
79 |
+
|
80 |
+
```shell
|
81 |
+
pip install --upgrade 'transformers>=4.44.2' 'torch>=2.0' accelerate
|
82 |
+
```
|
83 |
+
|
84 |
+
## **Usage Example**
|
85 |
+
|
86 |
+
```python
|
87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
88 |
+
import torch
|
89 |
+
|
90 |
+
device = "cuda"
|
91 |
+
|
92 |
+
model = AutoModelForCausalLM.from_pretrained("Tongda/Tongda1-1.5B-BKI", device_map="auto", torch_dtype=torch.float16)
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained("Tongda/Tongda1-1.5B-BKI")
|
94 |
+
|
95 |
+
model.eval()
|
96 |
+
|
97 |
+
instruction = "分析给定的公告,提取其中的“项目名称”、“公告类型”、“行业分类”、“发布时间”、“预算金额”、“采购人”、“响应文件截至提交时间”、”开标地址“、“所在地区”,并将其以json格式进行输出。如果公告出现“最高投标限价”相关的值,则“预算金额”为该值。请再三确认提取的值为项目的“预算金额”,而不是其他和“预算金额”无关的数值,否则“预算金额”中填入'None'。如果确认提取到了“预算金额”,请重点确认提取到的金额的单位,所有的“预算金额”单位为“元”。当涉及到进制转换的计算(比如“万元”转换为“元”单位)时,必须进行进制转换。其中“公告类型”只能从以下12类中挑选:采购公告-招标、采购公告-邀标、采购公告-询价、采购公告-竞谈、采购公告-竞磋、采购公告-竞价、采购公告-单一来源、采购公告-变更、采购结果-中标、采购结果-终止、采购结果-废标、采购结果-合同。其中,“行业分类”只能从以下12类中挑选:建筑与基础设施、信息技术与通信、能源与环保、交通与物流、金融与保险、医疗与健康、教育与文化、农业与林业、制造与工业、政府与公共事业、旅游与娱乐、其他。"
|
98 |
+
|
99 |
+
# the content of any bid announcement
|
100 |
+
input_report = "#### 通答产业园区(2024���-2027年)智能一体化项目公开招标公告..."
|
101 |
+
|
102 |
+
messages = [
|
103 |
+
{"role": "system", "content": instruction},
|
104 |
+
{"role": "user", "content": input_report}
|
105 |
+
]
|
106 |
+
|
107 |
+
text = tokenizer.apply_chat_template(
|
108 |
+
messages,
|
109 |
+
tokenize=False,
|
110 |
+
add_generation_prompt=True
|
111 |
+
)
|
112 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
113 |
+
|
114 |
+
generated_ids = model.generate(
|
115 |
+
model_inputs.input_ids,
|
116 |
+
max_new_tokens=512
|
117 |
+
)
|
118 |
+
generated_ids = [
|
119 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
120 |
+
]
|
121 |
+
|
122 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
123 |
+
|
124 |
+
response
|
125 |
+
```
|
126 |
+
|
127 |
+
---
|
128 |
+
## **Evaluation & Performance**
|
129 |
+
|
130 |
+
The Tongda1-1.5B-BKI model has shown remarkable performance in information extraction tasks. Compared to the baseline model Qwen2-1.5B-Instruct, Tongda1-1.5B-BKI excels across multiple evaluation metrics, particularly in extracting key information from tender announcements, achieving significant improvements. Even when compared to larger models like Qwen2.5-3B-Instruct and Qwen2-7B-Instruct, Tongda1-1.5B-BKI still demonstrates outstanding performance. Additionally, it outperforms the optimized online model glm-4-flash. Here are the evaluation results for each model:
|
131 |
+
|
132 |
+
| Model | ROUGE-1 | ROUGE-2 | ROUGE-Lsum | BLEU |
|
133 |
+
|-----------------------|---------|---------|------------|-------|
|
134 |
+
| Tongda1-1.5B-BKI | 0.853 | 0.787 | 0.853 | 0.852 |
|
135 |
+
| Qwen2-1.5B-Instruct | 0.412 | 0.231 | 0.411 | 0.431 |
|
136 |
+
| Qwen2.5-3B-Instruct | 0.686 | 0.578 | 0.687 | 0.755 |
|
137 |
+
| Qwen2-7B-Instruct | 0.703 | 0.578 | 0.703 | 0.789 |
|
138 |
+
| glm-4-flash | 0.774 | 0.655 | 0.775 | 0.816 |
|
139 |
+
|
140 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ebcbd0c8577b39464e6dc0/Qiyi7onDe99b2USArl0oG.png)
|
141 |
+
|
142 |
+
---
|
143 |
+
|
144 |
+
## **Limitations**
|
145 |
+
|
146 |
+
- **Language Limitation**: The model is primarily trained on Chinese bidding announcements. Performance on other languages or non-bidding content may be limited.
|
147 |
+
- **Strict Formatting**: The model may have reduced accuracy when the bidding announcements deviate significantly from common structures.
|
148 |
+
|
149 |
+
---
|
150 |
+
|
151 |
+
## **Citation**
|
152 |
+
If you use this model, please consider citing it as follows:
|
153 |
+
|
154 |
+
```
|
155 |
+
@inproceedings{Tongda1-1.5B-BKI,
|
156 |
+
title={Tongda1-1.5B-BKI: LoRA Fine-tuned Model for Bidding Announcements},
|
157 |
+
author={Ted-Z},
|
158 |
+
year={2024}
|
159 |
+
}
|
160 |
+
```
|
161 |
+
|
162 |
+
## **Contact**
|
163 |
+
For further inquiries or fine-tuning services, please contact us at [Tongda](https://www.tongdaai.com/).
|
164 |
+
|