File size: 9,552 Bytes
39ac19c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2 - GGUF
- Model creator: https://huggingface.co/RyanYr/
- Original model: https://huggingface.co/RyanYr/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q2_K.gguf) | Q2_K | 1.39GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_XS.gguf) | IQ3_XS | 1.53GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_S.gguf) | IQ3_S | 1.59GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_S.gguf) | Q3_K_S | 1.59GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ3_M.gguf) | IQ3_M | 1.65GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K.gguf) | Q3_K | 1.73GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_M.gguf) | Q3_K_M | 1.73GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q3_K_L.gguf) | Q3_K_L | 1.85GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ4_XS.gguf) | IQ4_XS | 1.91GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_0.gguf) | Q4_0 | 1.99GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.IQ4_NL.gguf) | IQ4_NL | 2.0GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K_S.gguf) | Q4_K_S | 2.0GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K.gguf) | Q4_K | 2.09GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_K_M.gguf) | Q4_K_M | 2.09GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q4_1.gguf) | Q4_1 | 2.18GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_0.gguf) | Q5_0 | 2.37GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K_S.gguf) | Q5_K_S | 2.37GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K.gguf) | Q5_K | 2.41GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_K_M.gguf) | Q5_K_M | 2.41GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q5_1.gguf) | Q5_1 | 2.55GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q6_K.gguf) | Q6_K | 2.76GB |
| [self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2-gguf/blob/main/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2.Q8_0.gguf) | Q8_0 | 3.58GB |
Original model description:
---
base_model: RyanYr/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter1
library_name: transformers
model_name: self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2
This model is a fine-tuned version of [RyanYr/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter1](https://huggingface.co/RyanYr/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter1).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="RyanYr/self-correct_Llama-3.2-3B-Instruct_metaMathQA_dpo_iter2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/mkbbxyq2)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.45.2
- Pytorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to. |