RichardErkhov commited on
Commit
54200b7
·
verified ·
1 Parent(s): 3718183

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Qwen1.5-MoE-A2.7B-Chat - bnb 4bits
11
+ - Model creator: https://huggingface.co/Qwen/
12
+ - Original model: https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ license_name: tongyi-qianwen
21
+ license_link: >-
22
+ https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat/blob/main/LICENSE
23
+ language:
24
+ - en
25
+ pipeline_tag: text-generation
26
+ tags:
27
+ - chat
28
+ ---
29
+
30
+ # Qwen1.5-MoE-A2.7B-Chat
31
+
32
+
33
+ ## Introduction
34
+
35
+ Qwen1.5-MoE is a transformer-based MoE decoder-only language model pretrained on a large amount of data.
36
+
37
+ For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen-moe/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5).
38
+
39
+ ## Model Details
40
+ Qwen1.5-MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, `Qwen1.5-MoE-A2.7B` is upcycled from `Qwen-1.8B`. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieching comparable performance to `Qwen1.5-7B`, it only requires 25% of the training resources. We also observed that the inference speed is 1.74 times that of `Qwen1.5-7B`.
41
+
42
+ ## Training details
43
+ We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
44
+
45
+ ## Requirements
46
+ The code of Qwen1.5-MoE has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error:
47
+ ```
48
+ KeyError: 'qwen2_moe'.
49
+ ```
50
+
51
+ ## Quickstart
52
+
53
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
54
+
55
+ ```python
56
+ from transformers import AutoModelForCausalLM, AutoTokenizer
57
+ device = "cuda" # the device to load the model onto
58
+
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ "Qwen/Qwen1.5-MoE-A2.7B-Chat",
61
+ torch_dtype="auto",
62
+ device_map="auto"
63
+ )
64
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
65
+
66
+ prompt = "Give me a short introduction to large language model."
67
+ messages = [
68
+ {"role": "system", "content": "You are a helpful assistant."},
69
+ {"role": "user", "content": prompt}
70
+ ]
71
+ text = tokenizer.apply_chat_template(
72
+ messages,
73
+ tokenize=False,
74
+ add_generation_prompt=True
75
+ )
76
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
77
+
78
+ generated_ids = model.generate(
79
+ model_inputs.input_ids,
80
+ max_new_tokens=512
81
+ )
82
+ generated_ids = [
83
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
84
+ ]
85
+
86
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
+ ```
88
+
89
+ For quantized models, we advise you to use the GPTQ correspondents, namely `Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4`.
90
+
91
+
92
+ ## Tips
93
+
94
+ * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`.
95
+ *
96
+