RichardErkhov commited on
Commit
ff05c7b
·
verified ·
1 Parent(s): 74b59ee

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +771 -0
README.md ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Gemma-2-2B-Instruct - GGUF
11
+ - Model creator: https://huggingface.co/LlamaFinetuneBase/
12
+ - Original model: https://huggingface.co/LlamaFinetuneBase/Gemma-2-2B-Instruct/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Gemma-2-2B-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q2_K.gguf) | Q2_K | 1.15GB |
18
+ | [Gemma-2-2B-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.IQ3_XS.gguf) | IQ3_XS | 1.22GB |
19
+ | [Gemma-2-2B-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.IQ3_S.gguf) | IQ3_S | 1.27GB |
20
+ | [Gemma-2-2B-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q3_K_S.gguf) | Q3_K_S | 1.27GB |
21
+ | [Gemma-2-2B-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.IQ3_M.gguf) | IQ3_M | 1.3GB |
22
+ | [Gemma-2-2B-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q3_K.gguf) | Q3_K | 1.36GB |
23
+ | [Gemma-2-2B-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q3_K_M.gguf) | Q3_K_M | 1.36GB |
24
+ | [Gemma-2-2B-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q3_K_L.gguf) | Q3_K_L | 1.44GB |
25
+ | [Gemma-2-2B-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.IQ4_XS.gguf) | IQ4_XS | 1.47GB |
26
+ | [Gemma-2-2B-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q4_0.gguf) | Q4_0 | 1.52GB |
27
+ | [Gemma-2-2B-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.IQ4_NL.gguf) | IQ4_NL | 1.53GB |
28
+ | [Gemma-2-2B-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q4_K_S.gguf) | Q4_K_S | 1.53GB |
29
+ | [Gemma-2-2B-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q4_K.gguf) | Q4_K | 1.59GB |
30
+ | [Gemma-2-2B-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q4_K_M.gguf) | Q4_K_M | 1.59GB |
31
+ | [Gemma-2-2B-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q4_1.gguf) | Q4_1 | 1.64GB |
32
+ | [Gemma-2-2B-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q5_0.gguf) | Q5_0 | 1.75GB |
33
+ | [Gemma-2-2B-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q5_K_S.gguf) | Q5_K_S | 1.75GB |
34
+ | [Gemma-2-2B-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q5_K.gguf) | Q5_K | 1.79GB |
35
+ | [Gemma-2-2B-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q5_K_M.gguf) | Q5_K_M | 1.79GB |
36
+ | [Gemma-2-2B-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q5_1.gguf) | Q5_1 | 1.87GB |
37
+ | [Gemma-2-2B-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q6_K.gguf) | Q6_K | 2.0GB |
38
+ | [Gemma-2-2B-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetuneBase_-_Gemma-2-2B-Instruct-gguf/blob/main/Gemma-2-2B-Instruct.Q8_0.gguf) | Q8_0 | 2.59GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: gemma
46
+ library_name: transformers
47
+ pipeline_tag: text-generation
48
+ extra_gated_heading: Access Gemma on Hugging Face
49
+ extra_gated_prompt: >-
50
+ To access Gemma on Hugging Face, you’re required to review and agree to
51
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
52
+ Face and click below. Requests are processed immediately.
53
+ extra_gated_button_content: Acknowledge license
54
+ tags:
55
+ - conversational
56
+ base_model: google/gemma-2-2b
57
+ ---
58
+
59
+
60
+ # Gemma 2 model card
61
+
62
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
63
+
64
+ **Resources and Technical Documentation**:
65
+
66
+ * [Responsible Generative AI Toolkit][rai-toolkit]
67
+ * [Gemma on Kaggle][kaggle-gemma]
68
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
69
+
70
+ **Terms of Use**: [Terms][terms]
71
+
72
+ **Authors**: Google
73
+
74
+ ## Model Information
75
+
76
+ Summary description and brief definition of inputs and outputs.
77
+
78
+ ### Description
79
+
80
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
81
+ built from the same research and technology used to create the Gemini models.
82
+ They are text-to-text, decoder-only large language models, available in English,
83
+ with open weights for both pre-trained variants and instruction-tuned variants.
84
+ Gemma models are well-suited for a variety of text generation tasks, including
85
+ question answering, summarization, and reasoning. Their relatively small size
86
+ makes it possible to deploy them in environments with limited resources such as
87
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
88
+ state of the art AI models and helping foster innovation for everyone.
89
+
90
+ ### Usage
91
+
92
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
93
+ ```sh
94
+ pip install -U transformers
95
+ ```
96
+
97
+ Then, copy the snippet from the section that is relevant for your usecase.
98
+
99
+ #### Running with the `pipeline` API
100
+
101
+ ```python
102
+ import torch
103
+ from transformers import pipeline
104
+
105
+ pipe = pipeline(
106
+ "text-generation",
107
+ model="google/gemma-2-2b-it",
108
+ model_kwargs={"torch_dtype": torch.bfloat16},
109
+ device="cuda", # replace with "mps" to run on a Mac device
110
+ )
111
+
112
+ messages = [
113
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
114
+ ]
115
+
116
+ outputs = pipe(messages, max_new_tokens=256)
117
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
118
+ print(assistant_response)
119
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
120
+ ```
121
+
122
+ #### Running the model on a single / multi GPU
123
+
124
+ ```python
125
+ # pip install accelerate
126
+ from transformers import AutoTokenizer, AutoModelForCausalLM
127
+ import torch
128
+
129
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
130
+ model = AutoModelForCausalLM.from_pretrained(
131
+ "google/gemma-2-2b-it",
132
+ device_map="auto",
133
+ torch_dtype=torch.bfloat16,
134
+ )
135
+
136
+ input_text = "Write me a poem about Machine Learning."
137
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
138
+
139
+ outputs = model.generate(**input_ids, max_new_tokens=32)
140
+ print(tokenizer.decode(outputs[0]))
141
+ ```
142
+
143
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
144
+ ```python
145
+ messages = [
146
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
147
+ ]
148
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
149
+
150
+ outputs = model.generate(**input_ids, max_new_tokens=256)
151
+ print(tokenizer.decode(outputs[0]))
152
+ ```
153
+
154
+ <a name="precisions"></a>
155
+ #### Running the model on a GPU using different precisions
156
+
157
+ The native weights of this model were exported in `bfloat16` precision.
158
+
159
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
160
+
161
+ * _Upcasting to `torch.float32`_
162
+
163
+ ```python
164
+ # pip install accelerate
165
+ from transformers import AutoTokenizer, AutoModelForCausalLM
166
+
167
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
168
+ model = AutoModelForCausalLM.from_pretrained(
169
+ "google/gemma-2-2b-it",
170
+ device_map="auto",
171
+ )
172
+
173
+ input_text = "Write me a poem about Machine Learning."
174
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
175
+
176
+ outputs = model.generate(**input_ids, max_new_tokens=32)
177
+ print(tokenizer.decode(outputs[0]))
178
+ ```
179
+
180
+ #### Running the model through a CLI
181
+
182
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
183
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
184
+ for getting started, then launch the CLI through the following command:
185
+
186
+ ```shell
187
+ local-gemma --model 2b --preset speed
188
+ ```
189
+
190
+ #### Quantized Versions through `bitsandbytes`
191
+
192
+ <details>
193
+ <summary>
194
+ Using 8-bit precision (int8)
195
+ </summary>
196
+
197
+ ```python
198
+ # pip install bitsandbytes accelerate
199
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
200
+
201
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
202
+
203
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
204
+ model = AutoModelForCausalLM.from_pretrained(
205
+ "google/gemma-2-2b-it",
206
+ quantization_config=quantization_config,
207
+ )
208
+
209
+ input_text = "Write me a poem about Machine Learning."
210
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
211
+
212
+ outputs = model.generate(**input_ids, max_new_tokens=32)
213
+ print(tokenizer.decode(outputs[0]))
214
+ ```
215
+ </details>
216
+
217
+ <details>
218
+ <summary>
219
+ Using 4-bit precision
220
+ </summary>
221
+
222
+ ```python
223
+ # pip install bitsandbytes accelerate
224
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
225
+
226
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
227
+
228
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
229
+ model = AutoModelForCausalLM.from_pretrained(
230
+ "google/gemma-2-2b-it",
231
+ quantization_config=quantization_config,
232
+ )
233
+
234
+ input_text = "Write me a poem about Machine Learning."
235
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
236
+
237
+ outputs = model.generate(**input_ids, max_new_tokens=32)
238
+ print(tokenizer.decode(outputs[0]))
239
+ ```
240
+ </details>
241
+
242
+ #### Advanced Usage
243
+
244
+ <details>
245
+ <summary>
246
+ Torch compile
247
+ </summary>
248
+
249
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
250
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
251
+
252
+ Note that two warm-up steps are required before the full inference speed is realised:
253
+
254
+ ```python
255
+ import os
256
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
257
+
258
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
259
+ from transformers.cache_utils import HybridCache
260
+ import torch
261
+
262
+ torch.set_float32_matmul_precision("high")
263
+
264
+ # load the model + tokenizer
265
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
266
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
267
+ model.to("cuda")
268
+
269
+ # apply the torch compile transformation
270
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
271
+
272
+ # pre-process inputs
273
+ input_text = "The theory of special relativity states "
274
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
275
+ prompt_length = model_inputs.input_ids.shape[1]
276
+
277
+ # set-up k/v cache
278
+ past_key_values = HybridCache(
279
+ config=model.config,
280
+ max_batch_size=1,
281
+ max_cache_len=model.config.max_position_embeddings,
282
+ device=model.device,
283
+ dtype=model.dtype
284
+ )
285
+
286
+ # enable passing kv cache to generate
287
+ model._supports_cache_class = True
288
+ model.generation_config.cache_implementation = None
289
+
290
+ # two warm-up steps
291
+ for idx in range(2):
292
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
293
+ past_key_values.reset()
294
+
295
+ # fast run
296
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
297
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
298
+ ```
299
+
300
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
301
+
302
+ </details>
303
+
304
+ ### Chat Template
305
+
306
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
307
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
308
+
309
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
310
+
311
+ ```py
312
+ from transformers import AutoTokenizer, AutoModelForCausalLM
313
+ import transformers
314
+ import torch
315
+
316
+ model_id = "google/gemma-2-2b-it"
317
+ dtype = torch.bfloat16
318
+
319
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
320
+ model = AutoModelForCausalLM.from_pretrained(
321
+ model_id,
322
+ device_map="cuda",
323
+ torch_dtype=dtype,)
324
+
325
+ chat = [
326
+ { "role": "user", "content": "Write a hello world program" },
327
+ ]
328
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
329
+ ```
330
+
331
+ At this point, the prompt contains the following text:
332
+
333
+ ```
334
+ <bos><start_of_turn>user
335
+ Write a hello world program<end_of_turn>
336
+ <start_of_turn>model
337
+ ```
338
+
339
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
340
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
341
+ the `<end_of_turn>` token.
342
+
343
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
344
+ chat template.
345
+
346
+ After the prompt is ready, generation can be performed like this:
347
+
348
+ ```py
349
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
350
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
351
+ print(tokenizer.decode(outputs[0]))
352
+ ```
353
+
354
+ ### Inputs and outputs
355
+
356
+ * **Input:** Text string, such as a question, a prompt, or a document to be
357
+ summarized.
358
+ * **Output:** Generated English-language text in response to the input, such
359
+ as an answer to a question, or a summary of a document.
360
+
361
+ ### Citation
362
+
363
+ ```none
364
+ @article{gemma_2024,
365
+ title={Gemma},
366
+ url={https://www.kaggle.com/m/3301},
367
+ DOI={10.34740/KAGGLE/M/3301},
368
+ publisher={Kaggle},
369
+ author={Gemma Team},
370
+ year={2024}
371
+ }
372
+ ```
373
+
374
+ ## Model Data
375
+
376
+ Data used for model training and how the data was processed.
377
+
378
+ ### Training Dataset
379
+
380
+ These models were trained on a dataset of text data that includes a wide variety
381
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
382
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
383
+ Here are the key components:
384
+
385
+ * Web Documents: A diverse collection of web text ensures the model is exposed
386
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
387
+ English-language content.
388
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
389
+ programming languages, which improves its ability to generate code or
390
+ understand code-related questions.
391
+ * Mathematics: Training on mathematical text helps the model learn logical
392
+ reasoning, symbolic representation, and to address mathematical queries.
393
+
394
+ The combination of these diverse data sources is crucial for training a powerful
395
+ language model that can handle a wide variety of different tasks and text
396
+ formats.
397
+
398
+ ### Data Preprocessing
399
+
400
+ Here are the key data cleaning and filtering methods applied to the training
401
+ data:
402
+
403
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
404
+ applied at multiple stages in the data preparation process to ensure the
405
+ exclusion of harmful and illegal content.
406
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
407
+ reliable, automated techniques were used to filter out certain personal
408
+ information and other sensitive data from training sets.
409
+ * Additional methods: Filtering based on content quality and safety in line with
410
+ [our policies][safety-policies].
411
+
412
+ ## Implementation Information
413
+
414
+ Details about the model internals.
415
+
416
+ ### Hardware
417
+
418
+ Gemma was trained using the latest generation of
419
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
420
+
421
+ Training large language models requires significant computational power. TPUs,
422
+ designed specifically for matrix operations common in machine learning, offer
423
+ several advantages in this domain:
424
+
425
+ * Performance: TPUs are specifically designed to handle the massive computations
426
+ involved in training LLMs. They can speed up training considerably compared to
427
+ CPUs.
428
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
429
+ for the handling of large models and batch sizes during training. This can
430
+ lead to better model quality.
431
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
432
+ handling the growing complexity of large foundation models. You can distribute
433
+ training across multiple TPU devices for faster and more efficient processing.
434
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
435
+ solution for training large models compared to CPU-based infrastructure,
436
+ especially when considering the time and resources saved due to faster
437
+ training.
438
+ * These advantages are aligned with
439
+ [Google's commitments to operate sustainably][sustainability].
440
+
441
+ ### Software
442
+
443
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
444
+
445
+ JAX allows researchers to take advantage of the latest generation of hardware,
446
+ including TPUs, for faster and more efficient training of large models.
447
+
448
+ ML Pathways is Google's latest effort to build artificially intelligent systems
449
+ capable of generalizing across multiple tasks. This is specially suitable for
450
+ [foundation models][foundation-models], including large language models like
451
+ these ones.
452
+
453
+ Together, JAX and ML Pathways are used as described in the
454
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
455
+ controller' programming model of Jax and Pathways allows a single Python
456
+ process to orchestrate the entire training run, dramatically simplifying the
457
+ development workflow."
458
+
459
+ ## Evaluation
460
+
461
+ Model evaluation metrics and results.
462
+
463
+ ### Benchmark Results
464
+
465
+ These models were evaluated against a large collection of different datasets and
466
+ metrics to cover different aspects of text generation:
467
+
468
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
469
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
470
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
471
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
472
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
473
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
474
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
475
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
476
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
477
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
478
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
479
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
480
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
481
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
482
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
483
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
484
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
485
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
486
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
487
+
488
+ ## Ethics and Safety
489
+
490
+ Ethics and safety evaluation approach and results.
491
+
492
+ ### Evaluation Approach
493
+
494
+ Our evaluation methods include structured evaluations and internal red-teaming
495
+ testing of relevant content policies. Red-teaming was conducted by a number of
496
+ different teams, each with different goals and human evaluation metrics. These
497
+ models were evaluated against a number of different categories relevant to
498
+ ethics and safety, including:
499
+
500
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
501
+ policies including child sexual abuse and exploitation, harassment, violence
502
+ and gore, and hate speech.
503
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
504
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
505
+ * Memorization: Automated evaluation of memorization of training data, including
506
+ the risk of personally identifiable information exposure.
507
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
508
+ biological, radiological, and nuclear (CBRN) risks.
509
+
510
+ ### Evaluation Results
511
+
512
+ The results of ethics and safety evaluations are within acceptable thresholds
513
+ for meeting [internal policies][safety-policies] for categories such as child
514
+ safety, content safety, representational harms, memorization, large-scale harms.
515
+ On top of robust internal evaluations, the results of well-known safety
516
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
517
+ are shown here.
518
+
519
+ #### Gemma 2.0
520
+
521
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
522
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
523
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
524
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
525
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
526
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
527
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
528
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
529
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
530
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
531
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
532
+
533
+ ## Dangerous Capability Evaluations
534
+
535
+ ### Evaluation Approach
536
+
537
+ We evaluated a range of dangerous capabilities:
538
+
539
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
540
+ cybersecurity contexts, we utilized both publicly available
541
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
542
+ well as internally developed CTF challenges. These evaluations measure the
543
+ model's ability to exploit vulnerabilities and gain unauthorized access in
544
+ simulated environments.
545
+ - **Self-proliferation:** We evaluated the model's capacity for
546
+ self-proliferation by designing tasks that involve resource acquisition, code
547
+ execution, and interaction with remote systems. These evaluations assess
548
+ the model's ability to independently replicate and spread.
549
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
550
+ deception, we conducted human persuasion studies. These studies involved
551
+ scenarios that measure the model's ability to build rapport, influence
552
+ beliefs, and elicit specific actions from human participants.
553
+
554
+ ### Evaluation Results
555
+
556
+ All evaluations are described in detail in
557
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
558
+ and in brief in the
559
+ [Gemma 2 technical report][tech-report].
560
+
561
+ <table>
562
+ <thead>
563
+ <tr>
564
+ <th>Evaluation</th>
565
+ <th>Capability</th>
566
+ <th>Gemma 2 IT 27B</th>
567
+ </tr>
568
+ </thead>
569
+ <tbody>
570
+ <tr>
571
+ <td>InterCode-CTF</td>
572
+ <td>Offensive cybersecurity</td>
573
+ <td>34/76 challenges</td>
574
+ </tr>
575
+ <tr>
576
+ <td>Internal CTF</td>
577
+ <td>Offensive cybersecurity</td>
578
+ <td>1/13 challenges</td>
579
+ </tr>
580
+ <tr>
581
+ <td>Hack the Box</td>
582
+ <td>Offensive cybersecurity</td>
583
+ <td>0/13 challenges</td>
584
+ </tr>
585
+ <tr>
586
+ <td>Self-proliferation early warning</td>
587
+ <td>Self-proliferation</td>
588
+ <td>1/10 challenges</td>
589
+ </tr>
590
+ <tr>
591
+ <td>Charm offensive</td>
592
+ <td>Persuasion</td>
593
+ <td>Percent of participants agreeing:
594
+ 81% interesting,
595
+ 75% would speak again,
596
+ 80% made personal connection</td>
597
+ </tr>
598
+ <tr>
599
+ <td>Click Links</td>
600
+ <td>Persuasion</td>
601
+ <td>34% of participants</td>
602
+ </tr>
603
+ <tr>
604
+ <td>Find Info</td>
605
+ <td>Persuasion</td>
606
+ <td>9% of participants</td>
607
+ </tr>
608
+ <tr>
609
+ <td>Run Code</td>
610
+ <td>Persuasion</td>
611
+ <td>11% of participants</td>
612
+ </tr>
613
+ <tr>
614
+ <td>Money talks</td>
615
+ <td>Persuasion</td>
616
+ <td>£3.72 mean donation</td>
617
+ </tr>
618
+ <tr>
619
+ <td>Web of Lies</td>
620
+ <td>Persuasion</td>
621
+ <td>18% mean shift towards correct belief, 1% mean shift towards
622
+ incorrect belief</td>
623
+ </tr>
624
+ </tbody>
625
+ </table>
626
+
627
+ ## Usage and Limitations
628
+
629
+ These models have certain limitations that users should be aware of.
630
+
631
+ ### Intended Usage
632
+
633
+ Open Large Language Models (LLMs) have a wide range of applications across
634
+ various industries and domains. The following list of potential uses is not
635
+ comprehensive. The purpose of this list is to provide contextual information
636
+ about the possible use-cases that the model creators considered as part of model
637
+ training and development.
638
+
639
+ * Content Creation and Communication
640
+ * Text Generation: These models can be used to generate creative text formats
641
+ such as poems, scripts, code, marketing copy, and email drafts.
642
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
643
+ service, virtual assistants, or interactive applications.
644
+ * Text Summarization: Generate concise summaries of a text corpus, research
645
+ papers, or reports.
646
+ * Research and Education
647
+ * Natural Language Processing (NLP) Research: These models can serve as a
648
+ foundation for researchers to experiment with NLP techniques, develop
649
+ algorithms, and contribute to the advancement of the field.
650
+ * Language Learning Tools: Support interactive language learning experiences,
651
+ aiding in grammar correction or providing writing practice.
652
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
653
+ by generating summaries or answering questions about specific topics.
654
+
655
+ ### Limitations
656
+
657
+ * Training Data
658
+ * The quality and diversity of the training data significantly influence the
659
+ model's capabilities. Biases or gaps in the training data can lead to
660
+ limitations in the model's responses.
661
+ * The scope of the training dataset determines the subject areas the model can
662
+ handle effectively.
663
+ * Context and Task Complexity
664
+ * LLMs are better at tasks that can be framed with clear prompts and
665
+ instructions. Open-ended or highly complex tasks might be challenging.
666
+ * A model's performance can be influenced by the amount of context provided
667
+ (longer context generally leads to better outputs, up to a certain point).
668
+ * Language Ambiguity and Nuance
669
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
670
+ nuances, sarcasm, or figurative language.
671
+ * Factual Accuracy
672
+ * LLMs generate responses based on information they learned from their
673
+ training datasets, but they are not knowledge bases. They may generate
674
+ incorrect or outdated factual statements.
675
+ * Common Sense
676
+ * LLMs rely on statistical patterns in language. They might lack the ability
677
+ to apply common sense reasoning in certain situations.
678
+
679
+ ### Ethical Considerations and Risks
680
+
681
+ The development of large language models (LLMs) raises several ethical concerns.
682
+ In creating an open model, we have carefully considered the following:
683
+
684
+ * Bias and Fairness
685
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
686
+ biases embedded in the training material. These models underwent careful
687
+ scrutiny, input data pre-processing described and posterior evaluations
688
+ reported in this card.
689
+ * Misinformation and Misuse
690
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
691
+ * Guidelines are provided for responsible use with the model, see the
692
+ [Responsible Generative AI Toolkit][rai-toolkit].
693
+ * Transparency and Accountability:
694
+ * This model card summarizes details on the models' architecture,
695
+ capabilities, limitations, and evaluation processes.
696
+ * A responsibly developed open model offers the opportunity to share
697
+ innovation by making LLM technology accessible to developers and researchers
698
+ across the AI ecosystem.
699
+
700
+ Risks identified and mitigations:
701
+
702
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
703
+ (using evaluation metrics, human review) and the exploration of de-biasing
704
+ techniques during model training, fine-tuning, and other use cases.
705
+ * Generation of harmful content: Mechanisms and guidelines for content safety
706
+ are essential. Developers are encouraged to exercise caution and implement
707
+ appropriate content safety safeguards based on their specific product policies
708
+ and application use cases.
709
+ * Misuse for malicious purposes: Technical limitations and developer and
710
+ end-user education can help mitigate against malicious applications of LLMs.
711
+ Educational resources and reporting mechanisms for users to flag misuse are
712
+ provided. Prohibited uses of Gemma models are outlined in the
713
+ [Gemma Prohibited Use Policy][prohibited-use].
714
+ * Privacy violations: Models were trained on data filtered for removal of PII
715
+ (Personally Identifiable Information). Developers are encouraged to adhere to
716
+ privacy regulations with privacy-preserving techniques.
717
+
718
+ ### Benefits
719
+
720
+ At the time of release, this family of models provides high-performance open
721
+ large language model implementations designed from the ground up for Responsible
722
+ AI development compared to similarly sized models.
723
+
724
+ Using the benchmark evaluation metrics described in this document, these models
725
+ have shown to provide superior performance to other, comparably-sized open model
726
+ alternatives.
727
+
728
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
729
+ [rai-toolkit]: https://ai.google.dev/responsible
730
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
731
+ [terms]: https://ai.google.dev/gemma/terms
732
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
733
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
734
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
735
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
736
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
737
+ [sustainability]: https://sustainability.google/operating-sustainably/
738
+ [jax]: https://github.com/google/jax
739
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
740
+ [sustainability]: https://sustainability.google/operating-sustainably/
741
+ [foundation-models]: https://ai.google/discover/foundation-models/
742
+ [gemini-2-paper]: https://goo.gle/gemma2report
743
+ [mmlu]: https://arxiv.org/abs/2009.03300
744
+ [hellaswag]: https://arxiv.org/abs/1905.07830
745
+ [piqa]: https://arxiv.org/abs/1911.11641
746
+ [socialiqa]: https://arxiv.org/abs/1904.09728
747
+ [boolq]: https://arxiv.org/abs/1905.10044
748
+ [winogrande]: https://arxiv.org/abs/1907.10641
749
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
750
+ [openbookqa]: https://arxiv.org/abs/1809.02789
751
+ [arc]: https://arxiv.org/abs/1911.01547
752
+ [triviaqa]: https://arxiv.org/abs/1705.03551
753
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
754
+ [humaneval]: https://arxiv.org/abs/2107.03374
755
+ [mbpp]: https://arxiv.org/abs/2108.07732
756
+ [gsm8k]: https://arxiv.org/abs/2110.14168
757
+ [realtox]: https://arxiv.org/abs/2009.11462
758
+ [bold]: https://arxiv.org/abs/2101.11718
759
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
760
+ [bbq]: https://arxiv.org/abs/2110.08193v2
761
+ [winogender]: https://arxiv.org/abs/1804.09301
762
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
763
+ [winobias]: https://arxiv.org/abs/1804.06876
764
+ [math]: https://arxiv.org/abs/2103.03874
765
+ [agieval]: https://arxiv.org/abs/2304.06364
766
+ [drop]: https://arxiv.org/abs/1903.00161
767
+ [big-bench]: https://arxiv.org/abs/2206.04615
768
+ [toxigen]: https://arxiv.org/abs/2203.09509
769
+ [eval-danger]: https://arxiv.org/abs/2403.13793
770
+
771
+